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Series Introduction

Many textbooks have been written on control engineering, describing new
techniques for controlling systems, or new and better ways of mathematic-
ally formulating existing methods to solve the ever-increasing complex
problems faced by practicing engineers. However, few of these books fully
address the applications aspects of control engineering. It is the intention of
this new series to redress this situation.

The series will stress applications issues, and not just the mathematics
of control engineering. It will provide texts that present not only both new
and well-established techniques, but also detailed examples of the
application of these methods to the solution of real-world problems. The
authors will be drawn from both the academic world and the relevant
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There are already many exciting examples of the application of control
techniques in the established fields of electrical, mechanical (including
aerospace), and chemical engineering. We have only to look around in
today’s highly automated society to see the use of advanced robotics
techniques in the manufacturing industries; the use of automated control
and navigation systems in air and surface transport systems; the increasing
use of intelligent control systems in the many artifacts available to the
domestic consumer market; and the reliable supply of water, gas, and
electrical power to the domestic consumer and to industry. However, there
are currently many challenging problems that could benefit from wider
exposure to the applicability of control methodologies, and the systematic
systems-oriented basis inherent in the application of control techniques.

This series presents books that draw on expertise from both the
academic world and the applications domains, and will be useful not only as
academically recommended course texts but also as handbooks for
practitioners in many applications domains. Robust Control Systems is
another outstanding entry in Dekker’s Control Engineering series.
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Preface

This second edition of Robust Control System Design introduces a new
design approach to modern control systems. This design approach
guarantees, for the first time, the full realization of robustness properties
of generalized state feedback control for most open-loop system conditions.
State and generalized state feedback control can achieve feedback system
performance and robustness far more effectively than other basic forms of
control. Performance and robustness (versus model uncertainty and control
disturbance) are mutually contradictory, yet they are the key properties
required by practical control systems. Hence, this design approach not only
enriches the existing modern control system design theory, but also makes
possible its wide application.
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Modern (or state space) control theory was developed in the 1960s.
The theory has evolved such that the state feedback control and its
implementing observer are designed separately (following the so-called
separation principle [Wil, 1995]). With this existing design approach,
although the direct state feedback system can be designed to have good
performance and robustness, almost all the actual corresponding observer
feedback systems have entirely different robustness. In the new design
approach presented here, the state feedback control and its implementing
observer are designed fogether. More explicitly, the state feedback control is
designed based on the results of its implementing observer. The resulting
state feedback control is the generalized state feedback control [Tsui, 1999b].

This fundamentally new approach guarantees—for all open-loop
systems with more outputs than inputs or with at least one stable
transmission zero—the same loop transfer function and therefore the
same robustness of the observer feedback system and the corresponding
direct state feedback system. Most open-loop systems satisfy either of these
two conditions. For all other open-loop systems, this approach guarantees
that the difference between the loop transfer functions of the above two
feedback systems be kept minimal in a simple least-square sense.

Modern and classical control theories are the two major components
of control systems theory. Compared with classical control theory, modern
control theory can describe a single system’s performance and robustness
more accurately, but it lacks a clear concept of feedback system robustness,
such as the loop transfer function of classical control theory. By fully using
the concept of loop transfer functions, the approach exploits the advantages
of both classical and modern control theories. This approach guarantees the
robustness and loop transfer function of classical control theory, while
designing this loop transfer function much more effectively (though
indirectly) using modern control design techniques. Thus it achieves both
good robustness and performance for feedback control systems.

If the first edition of this book emphasized the first of the above two
advantages (i.e., the true realization of robustness properties of feedback
control), then this second edition highlights the second of the above two
advantages—the far more effective design of high performance and
robustness feedback control itself.

A useful control theory should provide general and effective guidance
on complicated control system design. To achieve this, the design
formulation must fully address both performance and robustness. It must
also exploit fully the existing design freedom and apply a general, simple,
and explicit design procedure. The approach presented here truly satisfies
these requirements. Since this book concentrates on this new design
approach-andsits-relevant-analysisyother analytical control theory results are
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presented with an emphasis on their physical meanings, instead of their
detailed mathematical derivations and proofs.

The following list shows several of the book’s most important results.
With the exception of the third item, these results are not presented in any
other books:

1. The first general dynamic output feedback compensator that can
implement state or generalized state feedback control, and its
design procedure. The feedback system of this compensator is the
first general feedback system that has the same robustness
properties of its corresponding direct state feedback system
(Chapters 3 to 6).

2. A systematic, simple, and explicit eigenvalue assignment proce-
dure using static output feedback control or generalized state
feedback control (Section 8.1). This procedure enables the
systematic eigenvector assignment procedures of this book, and
is general to most open-loop system conditions if based on the
generalized state feedback control of this book.

3. Eigenvector assignment procedures that can fully use the
freedom of this assignment. Both numerical algorithms and
analytical procedures are presented (Section 8.2).

4. A general failure detection, isolation, and accommodation
compensator that is capable of considering system model
uncertainty and measurement noise, and its systematic design
procedure (Chapter 10).

5. The simplest possible formulation, and a truly systematic and
general procedure, of minimal order observer design (Chapter 7).

6. Solution of the matrix equation 74 — FT = LC [matrix pair
(A4, C) is observable and eigenvalues of matrix F are arbitrarily
assigned]. This solution is general and has all eigenvalues of F
and all rows of T completely decoupled (F is in Jordan form).
This solution uniquely enables the full use of the remaining
freedom of this matrix equation, which is fundamentally
important in most of the basic design problems of modern
control theory (Chapters 5 to 8, 10).

7. The basic design concept of generating a state feedback control
signal without estimating all state variables, and the general-
ization of this design concept from function observers only to all
feedback compensators (Chapters 3 to 10).

8. The complete unification of two existing basic feedback
structures of modern control theory—the zero input gain state
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observer feedback structure and the static output feedback
structure (Section 6.3).

9. A more generally accurate robust stability measure that is
expressed in terms of the sensitivities of each system pole. This
analytical measure can be used to guide systematic feedback
system design (Sections 2.2.2 and 8.2).

10. Comparison of computational complexity and therefore track-
ability (ability to adjust the original design formulation based on
the final and numerical design results) of all feedback control
design techniques (Section 9.3).

11. Emphasis on the distinct advantages of high performance/
robustness control design using eigenstructure assignment
techniques over the techniques for the direct design of loop
transfer functions (Chapters 2, 3, 8, 9).

12. The concept of adaptive control and its application in failure
accommodation and control (Section 10.2).

The first five of the above results are actual design results. The last seven are
new theoretical results and concepts that have enabled the establishment of
the first five results. In other words, the main new result (result 1, the full
realization of robustness properties of state/generalized state feedback
control) is enabled by some significant and fundamental developments (such
as results 6 to 8), and is validated by the distinct effectiveness of state/
generalized state feedback control (results 2 to 3 and 9 to 11).

This book also addresses the computational reliability of its analysis
and design algorithms. This is because practical control problems usually
require a large amount of computation, and unreliable computation can
yield totally unreliable results. Every effort has been made to use reliable
computational methods in design algorithms, such as the computation of
Hessenberg form (instead of the canonical form) and of orthogonal matrix
operation (instead of elementary matrix operation).

As a result, the computation required in this book is slightly more
complicated, but the more reliable results thus obtained make the effort
worthwhile. It should be noted that the computation of polynomials
required by the classical control theory is usually unreliable. The
development of computational software has also eased considerably the
complexity of computation. Each design procedure is presented in algorithm
form, and each step of these algorithms can be implemented directly by the
existing computational software.

This book will be useful to control system designers and researchers.
Although a solid background in basic linear algebra is required, it requires
remarkably-lesssmathematicalssophistication than other books similar in
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scope. This book can also be used as a textbook for students who have had a
first course (preferably including state space theory) in control systems.
Multi-input and multi-output systems are discussed throughout. However,
readers will find that the results have been substantially simplified to be
quite easily understandable, and that the results have been well unified with
the single-input and single-output system results. In addition, this book is
comprehensive and self-contained, with every topic introduced at the most
basic level. Thus it could also be used by honor program students with
background in signals and systems only.

An overview of each chapter follows. Chapter 1 introduces basic
system models and properties. Chapter 2 analyzes the performance and
sensitivity of a single overall system. Chapter 3 describes the critical role of
loop transfer functions on the sensitivity of feedback systems, including the
observer feedback systems. Chapter 4 proposes the new design approach
and analyzes its advantages. Chapter 5 presents the solution of a basic
matrix equation. This solution is used throughout the remaining chapters
(except Chapter 9). Chapter 6 presents the design of the dynamic part of the
observer such that for any state feedback control signal generated by this
observer, the loop transfer function of this control is also fully realized.
Chapter 7 presents the design of the function observer, which generates an
arbitrarily given state feedback control signal, with minimized observer
order. Chapter 8 presents the eigenvalue/vector assignment control design
methods. Chapter 9 introduces the linear quadratic optimal control design
methods. Both designs of Chapters 8 and 9 will determine the output part of
the observer of Chapter 6, as well as the “target” closed-loop system loop
transfer function. Comparison of various designs reveals two distinct
advantages of eigenstructure assignment design. Chapter 10 deals with the
design of a general failure detection, isolation, and (adaptive) accommoda-
tion compensator that is capable of considering system model uncertainty
and measurement noise. This compensator has the compatible structure
of—and can be implemented in coordination with—the normal (free of
major failure) robust control compensator of this book. There is a set of
simple exercises at the end of each chapter.

To make the book self-contained, Appendix A provides a simple
introduction to the relevant mathematical background material. Appendix
B lists the mathematical models of eight real-world systems for synthesized
design practice.

I would like to thank everyone who helped me, especially during my
student years. I also thank my former student Reza Shahriar, who assisted
with some of the computer graphics.

Chia-Chi Tsui
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1

System Mathematical Models and
Basic Properties

Unlike other engineering specialities whose subject of study is a specific
engineering system such as an engine system or an airborne system, control
systems theory studies only a general mathematical model of engineering
systems. This chapter introduces two basic mathematical models and some
basic system properties revealed by these models. There are four sections in
this chapter.

Section 1.1 introduces the state space model and transfer function
model of linear time-invariant multi-input and multi-output systems, and
the basic relationship between these two models.

Section 1.2 describes the eigenstructure decomposition of the state
space-models-where-the-dynamicmatsix of this model is in Jordan form.
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Section 1.3 introduces two basic system properties—controllability
and observability.

Section 1.4 introduces two basic system parameters—system poles and
zeros. These properties and parameters can be simply and clearly described
based on the eigenstructure decomposition of the state space model.

1.1 TWO KINDS OF MATHEMATICAL MODELS

This book studies only the linear time-invariant systems, which have also
been the main subject of control systems theory. A linear time-invariant
system can be represented by two kinds of mathematical models—the state
space model and the transfer function model. The control theory based on
the state space model is called the ‘‘state space control theory” or the
“modern control theory,” and the control theory based on the transfer
function model is called the “‘classical control theory.”

We will first introduce the state space model and its derivation.

A state space model is formed by a set of first-order linear differential
equations with constant coefficients (1.1a) and a set of linear equations

(1.1b)
x(t) = Ax(¢t) + Bu(t) (1.1a)
y(1) = Cx(t) + Du(¢) (1.1b)
where
x(1) = [x1(£),...,x,(2)] is the system state vector (the prime symbol
stands for transpose)
xi(t),i=1,...,n are the system state variables

u(?) = [ur (1), ...,u,(¢)] is the system input
y(t) = 11(8), ..., ym(0)] is the system output

and the system matrices (4, B, C, D) are real, constant, and with
dimensions n x n,n x p,m x n, and m X p, respectively.

In the above model, Eq. (1.1a) is called the ““dynamic equation,” which
describes the “dynamic part” of the system and how the initial system state
x(0) and system input u(z) will determine the system state x(¢). Hence matrix
A is called the “dynamic matrix” of the system. Equation (1.1b) describes
how the system state x(¢) and system input u(¢) will instantly determine
system output y(z). This is the “output part” of the system and is static
(memonyless)-asscompared-withsthe.dynamic part of the system.
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From the definition of (1.1), parameters p and m represent the number
of system inputs and outputs, respectively. If p > 1, then we call the
corresponding system “multi-input.” If m > 1, then we call the correspond-
ing system ‘“‘multi-output.” A multi-input or multi-output system is also
called a “MIMO system.” On the other hand, a system is called “SISO” if it
is both single-input and single-output.

In (1.1), the physical meaning of system state x(¢) is used to describe
completely the energy distribution of the system at time ¢, especially at t = 0
(initial time of system operation).

For example, in electrical circuit systems with linear time-invariant
circuit elements (inductors, resistors, and capacitors), the system state is
formed by all independent capacitor voltages and inductor currents. Thus its
initial condition x(0) can completely describe the initial electrical charge and
initial magnetic flux stored in the circuit system.

Another example is in linear motion mechanical systems with linear
time-invariant elements (springs, dampers, and masses), in which the system
state is formed by all independent mass velocities and spring forces. Thus its
initial state x(0) completely describes the initial dynamic energy and initial
potential energy stored in the mechanical system.

Because of this reason, the number () of system states also indicates
the number of the system’s independent energy storage devices.

Example 1.1

The following electrical circuit system is a linear time-invariant system
(Fig. 1.1).

Letting v1(z) and v,(7) be the node voltages of the circuit, and letting
the capacitor voltage and inductor current be the two system states x;(¢) and
x,(1), respectively, we have

vi(t) = x1(¢) and va(t) = x1(t) — Roxa (1) (1.2)
Vi AMA vz
+ Rz X

it & H% C x L

Figure 1.1 A linear time-invariant circuit system.
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In other words, all node voltages and branch currents can be expressed in
terms of system states and inputs. Thus the system’s output part (1.1b) can
be directly derived. For example, if the output y(z) is designated as
[vi(2), v2(1)]', then from (1.2),

y() = [28] = “ %J [28] +0 A Cx(1) + Ou(r)

The dynamic equation of this circuit system can also be derived by
standard circuit analysis. Applying Kirchoff’s current law at each node of
the circuit, we have

Vi (l)

() = Cn() + 110, 1) ()

I Ry
0 [Vz(t);zw(t)] LU V2it) di] (1.3b)

+ (1.3a)

Substituting (1.2) into (1.3) and after simple manipulation [including taking
derivatives on both sides of (1.3b)], we can have the form of (1.1a)

(1) = (gRll)xl(t) + (_Cl>x2(t) + <é> i)
1

(0 = 700 + (%)

Thus comparing (1.1a), the system matrices are

A= _lq(/CLRl) _—ILZ//CL] B:[l{)c]

Example 1.2

The following linear motion mechanical system is a linear time-invariant
system (Fig. 1.2).

Letting v;(¢) and v,(¢) be the node velocities in the system, and letting
the mass velocity and spring force be the system states x;(¢) and xx(7),
respectively, then

vi(1).=x.(2) and o (2).=x1(1) — Dy xa(1) (1.4)
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Figure 1.2 A linear time-invariant mechanical system.

In other words, all velocities and forces within this mechanical system
can be expressed in terms of the system states and the applied input force.
The system’s output part (1.1b) can thus be directly derived. For example, if
the system output y(¢) is designated as [v;(¢), v2(¢)]', then from (1.4),

=[] -S] csnso

x2(1)
The dynamic equation of this mechanical system can also be derived

using standard dynamic analysis. Balancing the forces at each node of this
system, we have

f([) = Ml}l([) + D]Vl([) + Dz[vl(t) — Vz(t)} (153)
0= DQ[VQ(Z‘) — V](Z‘)} + K[IVZ(l)dl] (ISb)

Substituting (1.4) into (1.5) and after simple manipulation [including
taking derivatives on both sides of (1.5b)], we can have the form of (1.1a)

Comparing (1.1a), the system matrices of this system are

Lo [
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In the above two examples, the forms and derivations of state space
models are very similar to each other. We call different physical systems that
are similar in terms of mathematical models “analogs.” This property
enables the simulation of the behavior of one physical system (such as a
mechanical system) by comparison with an analog but different physical
system (such as a circuit system), or by the numerical solution of the
mathematical model of that system. We call the former “‘analog simulation”
and the latter “digital simulation.”

The use of analogs can be extended to a wide range of linear time-
invariant physical systems, such as rotational mechanical systems, thermo-
dynamic systems, and fluid dynamic systems. Therefore, although the
mathematical models and the control theory which is based on these models
are abstract, they can have very general applications.

A linear time-invariant system can have another kind of mathematical
model, called the transfer function model, which can be derived from its
corresponding state space model.

Taking the Laplace transforms on both sides of (1.1),

X(s) = (sI — A)'x(0) + (sI — 4)"'BU(s) (1.6a)
Y(s) = CX(s) + DU(s) (1.6b)

where X (s), U(s), and Y(s) are the Laplace transforms of x(z), u(z), and
y(?), respectively, and [ stands for an n-dimensional identity matrix such
that sIX (s) = sX(s).

Substituting (1.6a) into (1.6b), we have

Y(s) = C(sI — 4)"'x(0) + [C(sI — 4)"' B+ D]U(s) (1.6¢)
Zero input response Zero state response
Y2i(s) Yzs(s)

From superposition principle of linear systems, Eqgs. (1.6a) and (1.6¢)
each have two terms or two contributing factors. The first term is due to the
system’s initial state x(0) only and the second is due to system input U(s)
only. For example, in (1.6¢), the system output (also called the system
“response”) Y(s) equals the first term if the system input is zero. We
therefore define the first term of (1.6¢) as “zero input response Y;(s).”
Similarly, Y (s) equals the second term of (1.6¢) if system initial state is zero,
and it is therefore defined as the “zero state response Y.(s).” The form of
(1.6) is guaranteed by the linearity property of the state space model (1.1)
and of the Laplace transform operator.
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The system’s transfer function model G(s) is defined from the system’s
zero state response as

Ya(s) = G(s)U(s) (1.7)
Therefore from (1.6¢),
G(s)=C(sI —A)'B+D (1.8)

The definition of G(s) shows that it reflects only the relationship
between the system input U(s) and output Y (s). This relationship (1.7, 1.8)
is derived by combining and simplifying a more detailed system structure
(1.6a,b), which involves explicitly system state X (s) and which is derived
directly from the state space model (1.1). In addition, the transfer function
model does not reflect directly and explicitly the system’s zero input
response, which is as important as zero state response.

Example 1.3
Consider the following RC circuit system (a) and mechanical system (b) with

a mass M and a frictional force D (Fig. 1.3):
Balancing the currents of (a) and the forces of (b), we have

V(1) = 0]

i(1) = Cv(t) + R

and

J() = M(1) + Dv(z) — 0]

vy V(Y

i) 59 SR % 0y
D

T 777777777
(@) (b)

Figure 1:3-First-ordercircuit:and-mechanical systems.
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Comparing (1.1a), the system matrices (AA A, B) equal (—1/RC, 1/C) and
(—=D/M, 1/M) for the above two systems, respectively.

Taking Laplace transforms on these two equations and after
manipulation, we have the form of (1.6a) or (1.6c) as

where V(s) and U(s) are the Laplace transforms of v(¢) and system input
signal [i(7) or f(¢)], respectively.

Letting U(s) = F/s (or step function) and taking the inverse Laplace
transforms on the above equation, we have, for =0,

0 = 27 9} =) + () - e
évzi(t) + V;‘Y(l‘)

In each of the above expressions of V(s) and v(¢), the two terms are
zero input response and zero state response, respectively. The two terms of
v(7) have the waveforms shown in Fig. 1.4.

The first waveform of Fig. 1.4 shows that the zero input response starts
at its initial condition and then decays exponentially to zero with a time
constant |1/A|. In other words, the response decays to 36.8% of its initial
value at 1 = [1/4].

This waveform has very clear physical meaning. In the circuit system
(a), this waveform shows (when the input current is zero) how the capacitor
charge [= Cv(¢)] is discharged to zero through the resistor R with current
v(t)/R, and with a time constant RC. In other words, the larger the
capacitor or resistor, the slower the discharge process. In the mechanical
system (b), this waveform shows with zero input force how the momentum
(= Mv(t)) slows to zero by the frictional force Dv(¢), with a time constant
M|/D. In other words, the larger the mass and the smaller the friction D, the
longer the time for the velocity to slow to 36.8% of its initial value.

The second waveform of Fig. 1.4 shows that the zero state response
starts at zero and then reaches exponentially to its steady state level, which is
specified by the input level F. This process also has a time constant |1/4],
which means that the response reaches 1 — 36.8% = 63.2% of its final value
at 1= |1/

This waveform also has very clear physical meaning. In the circuit
system (a), this waveform shows how the capacitor is charged from zero
untiloy(t)y=—(B/A)f==REbysasconstant current source Fu(f). The final
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Figure 1.4 Waveforms of zero input response and zero state response of a first-order system.
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value of v(¢) equals the supply side voltage, which means that the capacitor
is fully charged. This charging process has a time constant RC, which means
the larger the capacitor or the resistor, the slower the charging process. In
the mechanical system (b), this waveform shows how the mass is accelerated
from zero to —(B/A)F = F/D by a constant force Fu(z). This acceleration
process has a time constant M/D, which implies that the larger the mass or
the higher the final velocity F/D, which is implied by a lower D, the longer
the time for the mass to accelerate to 63.2% of its final velocity.

This example shows a very fitting analogy between the two systems,
and the solution of their common mathematical model. This example also
shows the importance of the initial state of the system (initial capacitor
charge and initial mass velocity, respectively) and its effects on the system—
the zero input response (discharging and de-acceleration, respectively).

The definition (1.7)—(1.8) of transfer function model G(s) implies that
G(s) cannot in general describe explicitly and directly the system’s zero input
response, especially when the system has many state variables, inputs, and
outputs. Because transient response is defined as the complete system
response before reaching steady state and is therefore closely related to the
system’s zero input response, the inherent feature of the transfer function
model will inevitably jeopardize the understanding of the system’s transient
response, whose quickness and smoothness is a major part of system
performance, as will be defined in the next chapter.

In Example 1.3, the concept of time constant is used as a measure of
transient response and is closely related to zero input response.

In both the state space model (1.1) and the transfer function model
(1.8), the system matrix D reflects only an independent and static relation
between system inputs and outputs. This relation can be easily measured
and cancelled in the analysis and design. For this reason, we will assume
D = 0 in the rest of this book. Using this assumption, the transfer function
model of (1.8) now becomes

G(s)=C(sI —A)'B (1.9)
U(s) X(s) Y(s)
— | sl-A'B .I c >

Figure 1.5 Partitioned block diagram representation of a system’s transfer
function model.

Copyright 2004 by Marcel DekKer, Inc. All Rights Reserved.



Finally, the transfer function model (1.9) can be represented by the
block diagram in Fig. 1.5, which is a series connection of two blocks.

1.2 EIGENSTRUCTURE DECOMPOSITION OF A STATE
SPACE MODEL

To gain a simpler yet deeper understanding of system structure and
properties, we partition the system dynamic matrix

| (A T
A=VAVIA|l Vs 0 1, . :

= | | (1.10a)

Ay | | -Ty-

AT'AT

where A =diag{Ai,...,A;} is called a “Jordan form matrix,” whose
diagonal matrix blocks A; (i =1,...,q, called “Jordan blocks”) are formed
by the eigenvalues (4;,i = 1,...,n) of matrix 4 according to the following

rules:

A; = 4;, if A;is real and distinct
o; ;] if the corresponding /; and 44| are
A= [_wi gi } "a complex conjugate pair ¢; + jw;
A; =diag{A,;,j =1,..., ¢}, if the corresponding /; repeats »; times,
and the n; ; dimensional matrix
Ai 1

Aij= S (blank entries are all 0’s) (1.10b)
o

i
and is called “bidiagonal form matrix,” where

nig - hig = n;

Finally, the sum of dimensions of all Jordan blocks A; (i =1,...,¢q) equals
n.

When matrix 4 is in (1.10), the corresponding state space model is said
to be in “Jordan canonical form.” Any real square matrix (and any dynamic
matrix)A-canshave-the-eigenstructuresdecomposition such as (1.10).
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Because (1.10) implies AV — VA =0, we call matrix J the “right
eigenvector matrix” of matrix A4, and call each column of matrix
Vv (i=1,...,n), the “right eigenvector” of matrix 4 corresponding to
Ai. Similarly, because T4 — AT = 0, we call matrix 7 the “left eigenvector
matrix” of matrix 4 and call each row of matrix 7, t; (i = 1,...,n), the “left
eigenvector” of matrix 4 corresponding to 4;. All but the first eigenvectors
corresponding to the Jordan block (1.10b) are derived based on each other
and are called the “generalized eigenvectors.”

From (1.10),

(7 = Ay = (VT = MV = (sT =)

Therefore, from (1.9) and the inverse matrix rules,

G(s)=CV(sI—A)'Vv'B (1.11a)
_ CVadi(sI —A)V'B
B det(sI — A) (1.11)

_ CVadj(sI —A)V"'B
(s = A1) (5= )

(1.11c)

where adj(-) and det(-) stand for the adjoint and the determinant of the
corresponding matrix, respectively.

From (1.11c), transfer function G(s) is a rational polynomial matrix. It
has an n-th order denominator polynomial whose n roots equal the n
eigenvalues of the system dynamic matrix, and which is called the
“characteristic polynomial” of the system.

Comparing (1.11a) with (1.9), a new system matrix triple
(A, V-'B, CV) has the same transfer function as that of system matrix
triple (4, B, C), provided that 4 = VAV ~!. We call these two state space
models and their corresponding systems “‘similar’ to each other and call the
transformation between the two similar state space models ‘“‘similarity
transformation.”” This property can be extended to any system matrix triple
(07140, Q7 'B, CQ) for a nonsingular Q.

The physical meaning of similar systems can be interpreted as follows.
Let x(7) and X(7) be the state vectors of state space models (4, B, C) and
(07140, O7'B, CQ), respectively. Then from (1.1),

X(1) = Q7' 40%(1) + O~ Bu(1) (1.12a)
y(1) = COX(t) + Du(1) (1.12b)
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It is clear from (1.1a) and (1.12a) that

x(1) = Ox(r)  or X(1) = 0 'x(1) (1.13)

From Definitions A.3—A.4 of Appendix A, (1.13) implies that the only
difference between the state space models (1.1) and (1.12) is that the state
vectors are based on different basis vector matrices (/ and Q, respectively).

Similarity transformation, especially when the state space model is
transformed to “Jordan canonical form” where the dynamic matrix is in
Jordan form, is a very effective and very frequently used scheme which can
substantially simplify the understanding of the system, as will be shown in
the rest of this chapter.

1.3 SYSTEM ORDER, CONTROLLABILITY, AND
OBSERVABILITY

Definition 1.1

The order n of a system equals the order of the system’s characteristic
polynomial. It is clear from (1.11c) that system order also equals the number
of states of the system.

Let us discuss the situation of the existence of common factors
between the transfer function’s numerator and denominator polynomials.
Because this denominator polynomial is defined as the system’s character-
istic polynomial, and because common factors can cancel out each other, the
above situation implies that the corresponding system order is reducible. We
call this kind of system “‘reducible.” Otherwise the system is said to be
“irreducible.”

The situation of reducible systems can be more explicitly described by
their corresponding state space models. Definition 1.1 implies that in
reducible systems, some of the system states are not involved with the
system’s input and output relation G(s). In other words, in reducible
systems, some of the system states either cannot be influenced by any of the
system inputs, or cannot influence any of the system outputs. We will define
these two situations separately in the following.

Definition 1.2

If there is at least one system state which cannot be influenced by any of the
systemsinputs;sthensthessystemsissuncontrollable; otherwise the system is
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controllable. Among many existing criteria of controllability, perhaps the
simplest is that a system is controllable if and only if there exists no constant
/ such that the rank of matrix [A/ — 4 : B] is less than n.

Definition 1.3

If there is at least one system state which cannot influence any of the system
outputs, then the system is unobservable; otherwise the system is observable.
Among many existing criteria of observability, perhaps the simplest is that a
system is observable if and only if there exists no constant A such that the
rank of matrix [AI' — A4’ : C'] is less than n.

Because the rank of matrix Al — A always equals n if 4 is not an
eigenvalue of A4, the above criteria can be checked only for the n values of 4
which equal the eigenvalues of matrix 4.

It is clear that an irreducible system must be both controllable and
observable. Any uncontrollable or unobservable system is also reducible.

Up to this point, we can see a common and distinct phenomenon
of linear systems—duality. For example, in linear systems, current and
voltage, force and velocity, charge and flux, dynamic energy and
potential energy, capacitance and inductance, mass and spring are dual
pairs. In linear algebra and linear control theory which describe linear
systems, matrix columns and rows, right and left eigenvectors, inputs
and outputs, and controllability and observability are also dual to each
other.

The phenomenon of duality can not only help us understand linear
systems comprehensively, but also help us solve some specific analysis and
design problems. For example, the determination of whether a system
(4, B) is controllable can be replaced by the determination of whether a
system (4 = A', C = B') is observable instead.

Because matrix [/ — Q '4Q: Q7 'B] = Q7 '[(A1 — A)Q : B] has the
same rank as that of matrix [A] — A4 : B], similarity transformation will not
change the controllability property of the original system. Similarity
transformation changes only the basis vector matrix of state vectors of
the system’s state space model and therefore cannot change the system’s
basic properties such as controllability. From duality, similarity transfor-
mation cannot change the observability of the system either. It is therefore
valid to determine a system’s controllability and observability conditions
after similarity transformation.

The following three examples show the relative simplicity of
determining-controllabilitysand-obsesvability when the system matrices are
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in special forms (especially the Jordan canonical form), which can be derived
from any system matrices by similarity transformation.

Example 1.4

Determine whether the system

-1 0 0 -b;-
(A,B, C) = 0 -2 0 s -b,- ,[C] :C i C3
0 0 —3| |[-bs-

is controllable and observable.

From Definition 1.2, it is clear that if any row of matrix B equals zero,
say b; =0 (i =1, 2, 3), then there exist a constant 1 = — i such that the i-th
row of matrix [A] — A4 : B] equals zero. Only when every row of matrix B
is nonzero, then the rank of matrix [Af — A : B] equals n, for 1= —i
(i =1,2,3) = all eigenvalues of matrix A. Thus the necessary and sufficient
condition for this system to be controllable is that every row of matrix B is
nonzero.

Similarly (from duality), the necessary and sufficient condition for this
system to be observable is that every column of matrix C is nonzero.

From (1.9), the transfer function of this system is

G(s)=C(sI —A)'B
_ci(s+2)(s+3)by +ea(s 4+ 1)(s +3)by +¢3(s + 1)(s + 2)bs
B (s+ 1)(s+2)(s+3)

It is clear that if any b; or ¢; equals zero (i = 1,2,3), then there will be
common factors between the numerator and denominator polynomials of
G(s). However, the reducible transfer function G(s) cannot indicate the
converse: whether a row of matrix B or a column of matrix C is zero, or
whether the system is uncontrollable or unobservable or both. In this sense,
the information provided by the transfer function model is less complete and
explicit than the state space model.

Controllability and observability conditions can also be clearly
revealed from the system’s block diagram.

Figure 1.6 shows clearly that any system state x;(¢) is influenced by the
input u(¢) if and only if the corresponding b;#0 (i = 1, 2, 3), and that any
x;(t) influences output y(¢) if and only if ¢; #0.
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u(t)

Figure 1.6 Block diagram of the system from Example 1.4.

Example 1.5

Example 1.4 is a Jordan canonical formed system with distinct and real
eigenvalues. The present example studies the same system with multiple
eigenvalues [see (1.10b)]. Let

It is clear that the rank of matrix [A] — 4 : B] equals #n if and only if b; #0,
and the rank of matrix [AI' — 4’ : (] equals n if and only if ¢; #0.

In examining the block diagram of this system (Fig. 1.7), it is clear that
b; and ¢, are the only links between the system states and the system’s inputs
and outputs, respectively. Because all system states are on a single path in
Fig. 1.7, it is of interest to observe that any system state is observable if and
only if all gains on that path and on the right side of this state are nonzero.
In the dual sense, any state is controllable if and only if all gains on that
path and on the left side of this state are nonzero. This property can help

uit) Xaft) %{t) x4(1) w{t)

Figure 1:7...Block-diagram-of.the:system from Example 1.5.
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one to extract the controllable or observable part of the system from the rest
of the system (see Sec. 5.1).

Examples 1.4 and 1.5 show that a system’s controllability and
observability properties can be easily checked based on Jordan canonical
forms of the system’s state space model. Unfortunately, the computational
problem of the similarity transformation to Jordan canonical form is
difficult and is usually very sensitive to the initial data variation.

On the other hand, the form of state space model of Example 1.5 is a
special case of a so-called Hessenberg form, which can be easily and reliably
computed and which can also be used to determine system controllability
and observability (see Sec. 5.1). In the next two examples, we will study a
second special case of the Hessenberg form state space model.

Example 1.6

The observable canonical form state space model:

—a; 1 0 ... 0 -b;-
—ay 0 1 -bz-
(4,B,C) = : : ol : ,[e1,0,...,0]
—ay,—1 0 1 -b,_1-
—a, O 0 -b,-
(1.14)

This is a single-output (although it can be a multiple input) system. The
above system matrices are said to be in the “observable canonical form.” In
addition, the system matrix 4 of (1.14) is called a “companion form” or
“canonical form” matrix. Let us examine the block diagram of this system.

Figure 1.8 shows that all system states can influence system output
(observable) if and only if ¢ #0, but if any of the 1’s of matrix 4 becomes 0,
then all system states left of this 1 on the main path (with all system states)
of Fig. 1.8 will become unobservable. It has been proven that any single-
output (n-th order) observable system is similar to (1.14) [Luenberger, 1967,
Chen, 1984].

From duality, if a system model is (4’, C', B'), where the system
matrix triple (4, B, C) is from (1.14), then this system model is said to be in
“controllable canonical form” and is controllable if and only if ¢; #0. Any
single-input controllable system is similar to this (4’, C', B').

Controllable and observable canonical form state space models share
anmimportant=propentyminstheirsecontesponding transfer function G(s).
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Figure 1.8 Block diagram of a single-output system in observable canonical
form.

Substituting (1.14) into (1.9), we have

G(s)=C(sI —A)'B
B ci(bis" ' 4+ bys" 24+ b,1s+Db,)
st as a4 a5 +ay,
N(s)
= D(s)

(1.15)

In other words, the unknown parameters of the canonical state space model
fully match the unknown parameters of the corresponding transfer function.
In addition, the » unknown parameters of the companion form matrix A
fully match the » unknown coefficients of its characteristic polynomial D(s),
which further fully determines all n eigenvalues of the matrix. For this
reason, we also call all (either Jordan, controllable, or observable) canonical
form state space model the “minimal parameter” model.

The computation of similarity transformation from a general state
space model to canonical forms (1.14) and (1.10) implies the compression of
system dynamic matrix parameters from general nxn to only n. In this
sense, the computation of (1.14) and (1.10) can be equally difficult [Laub,
1985].

In this single-output system, the corresponding transfer function has
the denominator D(s) as a scalar polynomial, and the numerator N(s) as a
polynomials:towsvector-Insthesnext-example, we will extend this result into
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multi-output systems whose transfer function has both its denominator D(s)
and numerator N(s) as a polynomial matrix.

Example 1.7

A multi-output observable system in canonical form:

r A L 0 ... 07 B,
A, 0 L : B,
A= : : 0 B= )
A 0 I B, (1.16)
L4, 0 0] B,
c=[L 0 0]
where the matrix blocks I; and i=1,...,v have dimensions m,_jxm;

(mo = m) and equal an m;_; dimensional identity matrix with m;_; — m;
columns eliminated. Here m; + - -- + m, = n.

For example, for m; ;| = 3, the corresponding /; matrix blocks can be:
1 00 1 0 10 00 1 0 0
01 0f,]0 L|,{0 Of,|L O],{0f,|Ll|, and |O
0 0 1 00 0 1 0 1 0 0 1

Without loss of generality (by assuming that all system outputs are
linearly independent [Chen, 1984]), we let m; =m and let I; be an
m-dimensional identity matrix. These m columns will disappear gradually
at matrices /; subsequent to I; (i = 2,...). Once the j-th column disappears
at [;, this column and its corresponding row will disappear at subsequent
matrices [;;1,.... We can therefore distinguish and assign a constant
parameter v; = i,j = 1,...,m. From Example 1.6, the disappearance of the
Jj-th column also implies that the j-th output is no longer influenced by any
more system states.

It is apparent that the largest value of v; equals v because all m
columns disappear at matrix /,.; in (1.16). It is also proven that any
observable system is similar to (1.16) [Luenberger, 1967; Chen, 1984], which
isscalledsthe:*block-obsenvable-canonical form” (see Sec. 5.1 also).
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To match all unknown parameters of (1.16) directly to all unknown
parameters of the corresponding transfer function

G(s) = D' (s)N(s) (1.17a)

as was done in Example 1.6, where D(s) and N(s) are mxm and m x p
dimensional polynomial matrices, respectively, we need to perform the
following two preliminary and simple operations.

First, fill m —m; zero rows into each matrix block A4; and

B;(i=1,...,v). The rows will be filled at the positions corresponding to
all missing columns of matrix block [; and its preceding I;’s
(j=i—1,...,1). For example, if m =3 and I; takes the above seven

different forms, then the zero rows shall be filled at the third, the second, the
first, the second and third, the first and third, and the first and second
positions of the second to the seventh matrix, respectively. At the end of this
operation, all matrix blocks A; and B; will become mxm and mxp
dimensional matrix blocks 4; and B; (i = 1,...,v), respectively.

Second, form matrices [/ : —A4;: —Ay:...: —A)] and [B) : By :...:
B,] and then circular shift (shift in zeros) each row (say, the j-th row) of
these two matrices to the right by m(v—v;) or p(v—v;) positions,
respectively, j =1,...,m. We denote the two resulting matrices of this
step as [fo CA Ay :/L,] and [El cBy:i. .. Bl,], respectively.

Finally, in (1.17a),

D(s) =I~0SV+1‘LSV71 +"'+1‘I\)71S+1‘iv (1.17b)
and
N(s)=Bis" '+ Bys" > +---+ B,_15+ B, (1.17¢)

It can be verified that the above (1.17) equals the G(s) of (1.9), which is
computed from (4, B, C) of (1.16) [Tsui and Chen, 1983a). (See Exercise 1.3
to 1.6 for the numerical examples of this result.)

The above two steps do not change, add or eliminate any parameter of
(A4, B, C) of (1.16). Therefore, these two steps, which have not appeared
explicitly before, enable the direct match between the parameters of state
space model (1.16) and the parameters of the transfer function model
(1.17a). A significant aspect of this direct parametric match is that it enables
the finding of the corresponding state space model (1.16) from a given
transfer-functionsmodels(1=17):Thissproblem is called “realization.”
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Comparing the forms of (1.14) and (1.16), the former is truly a special
case of the latter when m = 1. Therefore, the novel operation of (1.17) is the
direct generalization of realization problem, from the SISO case (m = 1) to
the MIMO case (m > 1).

Because the realization from (1.17) to (1.16) is easy, a transfer function
model-based design method can easily find its corresponding method in
state space theory. On the other hand, the computation of (1.16) from a
general state space model is very difficult (see the previous example).
Therefore it is difficult to find the corresponding design method in classical
control theory. This is another important reflection of the advantage of state
space control theory over classical control theory.

This book discusses only controllable and observable systems.

1.4 SYSTEM POLES AND ZEROS
Definition 1.4

A system pole is a constant 4 such that G(s = 1) = oo. From (1.11), a system
pole is a root of the characteristic polynomial of the system G(s) and is also
an eigenvalue of the dynamic matrix of the system. Thus the number of
poles of an irreducible system is 7.

Definition 1.5

In SISO systems, a system zero is a finite constant z such that G(s = z) = 0.
From (1.11), a system zero is a root of the numerator polynomial
CVadj(sI — A)V~'B of G(s), of an irreducible system.

In MIMO systems, CVadj(sI — A)V "' Bis not a scalar. Therefore, the
definition of system zeros is more complicated. From Rosenbrock [1973], we
define any finite constant z such that G(s = z) = 0 as “blocking zero.” A
system with blocking zero z has zero response to input upe” for any uy.

We also define any finite constant z such that the rank of G(s = z) is
less than min{m, p} (the minimum of m and p) as “transmission zero.”” Thus
a system with transmission zero z and with more outputs than inputs (m > p)
has at least one constant vector ug such that G(s = z)uy = 0. In other words,
such a system has zero response to input upe®, where uy must satisfy
G(s = z)ug = 0. Therefore, blocking zero is a special case of transmission
zero. There is no difference between blocking zeros and transmission zeros
in SISO systems.
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There is a clear and simple relationship between system transmission
zeros and the system’s state space model (4, B, C, D) [Chen, 1984]. Because

[C(zliA)l —OJ {ZI;A —i)}:{ZIo_A G(sB:z)}

hence
zZ[ -4 B z[ — A4 B
rank[S] A rank{ ] = rank[ }
= C -D 0 G(s=72)
= rank[z] — A] + rank[G(s = z)]
= n + min{m, p} (1.18)

In other words, transmission zero z must make the rank of matrix S (which
is formed by state space model parameters) less than n 4+ min{m, p}. This
relation is based on the assumption of irreducible systems so that z cannot
be a system pole and so that rank [z] — A] is guaranteed to be n.

Example 1.8
Let the transfer function of a system with three outputs and two inputs be

0 (s+1)/(s* +1)
G(s) = s(s+1)/(s*+1) (s+1)(s+2)/(s* +2s+3)
s(s+ D) (s+2)/(s* +2) (s+1D(s+2)/(s*>+25+2)

From Definition 1.5, this system has a blocking zero —1 and two
transmission zeros — 1 and 0, but — 2 is not a transmission zero.

This example shows that when a system has a different number of
inputs and outputs (p#m), its number of transmission zeros is usually much
less than its number of system poles. However, when a system has the same
number of inputs and outputs (m = p), its number of transmission zeros is
usually n — m. In addition, if such a system (with m = p) has matrix product
CB nonsingular, then its number of transmission zeros is always n — m.
These properties have been proved based on the determinant of matrix S of
(1.18) [Davison and Wang, 1974].

An interesting property of transmission zeros is as follows. Suppose
there are r transmission zeros of system (A4, B, C), then for any nonsingular
matrix-K-whichrapproachessinfinity;mzamong the » eigenvalues of matrix
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A — BKC, r of them will approach each of the transmission zeros and n — r
of them will approach infinity [Davison, 1978].

Another interesting property of transmission zeros is that when a
system G(s) is connected with a dynamic feedback compensator system
H(s), the set of transmission zeros of the overall feedback system equals the
union of the transmission zeros of G(s) and the poles of H(s) [Patel, 1978].

In addition, we will assign all stable transmission zeros of G(s) as the
poles of its corresponding dynamic feedback compensator H(s) (in Chap. 5).
Hence the accurate computation of transmission zeros of a given system is
important.

There are several methods of computing transmission zeros of a given
system [Davison and Wang, 1974; Davison, 1976, 1978; Kouvaritakis and
MacFarlane, 1976; MacFarlane and Karcaniar, 1976; Sinswat et al., 1976].
The following is a brief description of the so-called QZ method [Laub and
Moore, 1978]. This method computes all finite generalized eigenvalues z
such that there exists an n + p dimensional vector w satisfying

Sw =0 (1.19)

where matrix S is already defined in (1.18).

Equation (1.19) is valid for the case m = p. The transpose (or the dual)
of (1.19) can be used for the case m< p. The advantage of this method arises
from the existence of a numerically stable algorithm [Moler and Stewart,
1973] for computing the generalized eigenvalues [Laub and Moore, 1978].

We have briefly discussed the properties of system zeros. The
properties of system poles will be discussed in the next chapter, which
shows that the system poles are the most important parameters in
determining a system’s performance.

EXERCISES

1.1 For a linear time-invariant circuit system shown in Fig. 1.9:

(a) Let the currents of the two resistors be the two outputs of this
system, respectively. Find the state space model (1.1) of this
system.

(b) Derive the transfer function model (1.9) of this system.

(c) Plot the linear motion mechanical system which is analogous to
this circuit system. Indicate all signals and elements of this
mechanical system in terms of the corresponding circuit system
signals and elements.
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Figure 1.9 A linear time-invariant circuit system.

1.2 Let a controllable canonical form state space model be the dual from

Example 1.6.
A=A B=C =[¢1,0...0]
C=PB=b b

(a) Plot the block diagram similar to Fig. 1.8.
(b) Prove that ¢; # 0 is the necessary and sufficient condition for the
system (4, B, C) to be controllable.
(c) Prove that the transfer functions of (4, B, C) is the transpose of
that from Example 1.6.
1.3 Let a two-output observable canonical form system state space model

be
2 3 1 8
1 00
A=14 5 0 B=19 C =
01 0
6 7 0 10

(a) From the description from Example 1.7 (or Definition 5.1), find
the observability indices v; (i = 1,2).

(b) Following the two-step procedure from Example 1.7, derive the
polynomial matrix fraction description of the transfer function of
this system G(s) = D~'(s)N(s).
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(¢) Find the poles and zeros (if any) of this system.

$£—=2s—6 —=3s—7

Answer: vi =2,v; = 1,D(s) = [ 4 s
_ P

NS = [8s+10]

9

1.4 Repeat 1.3 for the system

a b 0 g h
1 00
01 0
e £ 0 k
4 C =1 —2D()—[S_a - ]
nswer: vy = 1,v =2,D(s) = —cs—e SS—ds—f
h
N(s)=[.g ; }
is—k js+1

1.5 Repeat 1.3 for the system

a b 1 0 i
c d 0 1 Jj 1 000
e f 00 k 01 00
g h 0 0 /
2 _ _ —bs —
Answer: vy =v, =2, D(s) = [S e =/ ]
—cs—g SS—ds—h
is + k
vo =[]
Jjs+1

1.6 Repeat 1.3 for the system

b
d
f
h

01 00

(= = =]

j {1 0 0 0}
B: C:

k

I
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1.7

1.8

32 e Ch2 fe
D(s):[s as* —es— g —bs* —fs h]
—c s—d
)
N(s) = [zs —i—l.cs—i—l}
J

Let two system dynamic matrices be

-1 1 0 -1 0 0
A= 0 -1 -1 A,=| 0 -1 1
0 0 -2 0o 0 -2
Compute the Jordan form decomposition (1.10) of the two matrices.

Verify N(s) [in G(s) = D7'(s)N(s)] from Examples 6.1 and 6.3,
according to the two-step procedure from Example 1.7.
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2

Single-System Performance and Sensitivity

High system performance and low sensitivity are the two required properties
of control systems. Low sensitivity is defined with respect to the system’s
mathematical model uncertainty and terminal disturbance, and is called
“robustness.”

Unfortunately, high performance and robustness are usually contra-
dictory to each other—higher performance systems usually have higher
sensitivity and worse robustness properties. Yet both high performance and
high robustness are essential to most practical engineering systems. Usually,
only high-performance systems have serious robustness problems and only
such systems are worthy of controlling. Robustness, which can be considered
as-treliability;-is—also-essential-in-most practical cases. Therefore, both
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performance and sensitivity properties must be studied. This chapter
consists of two sections which study system performance and sensitivity
properties, respectively.

Section 2.1 studies some system properties such as system stability,
quickness, and smoothness of system transient response, which are most
important (and most difficult to achieve) in system performance. This
section explains how these properties are most directly and explicitly
determined by the system poles.

Section 2.2 studies the property of system sensitivity via a novel
perspective of the sensitivities of system poles. A basic result of numerical
linear algebra is that the sensitivity of an eigenvalue is determined by its
corresponding left and right eigenvectors.

2.1 SYSTEM PERFORMANCE

The reason that systems control theory has concentrated mainly on linear
time-invariant systems is that only the mathematical models of this kind of
systems can have general and explicit solutions. Furthermore, only the
general and explicit understanding of the system can be used to guide
generally, systematically, and effectively the complicated control system
design.

The analytical solution of the state space model (1.1a) is, for # > 0,

x(1) = e'x(0) + / e Bu (1) dt (2.1)
0

where x(0) and u(r) (0<t<¢) are given system initial state and system
input, respectively. One way of deriving this result is by taking the inverse
Laplace transform on (1.6a). We call (2.1) the “complete system response”
of system state x(7).

Substituting (1.10) into (2.1) and using the Cayley—Hamilton theorem

1

x(1) = VeMV='x(0) + / Ver = =1 Bu(z) dr (2.2)

i=1

0
q ! q
(Z V,eAf’n>x(0) + / > VieMITBu(x) dr (2.3)
i=1 0

Thereforese’(i=rlsmsssg)maresthesonly time function terms related to the
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system in the system response of (2.1)—(2.3). In other words, the eigenvalues
(A) of system dynamic matrix 4 (or the system poles) are parameters which
most directly and explicitly determine the system response.

Let us analyze all possible waveforms of the function e based on the
definitions (1.10) of Jordan blocks A;.

N =it if A, = ), (2.4a)

) e’ cos(wt e’ sin(wt c o
e = (1) ( )] ifAf:{ ]
o

= 2.4b
—e% sin(wt) e cos(wt) - (2.40)

The linear combinations of the elements of this matrix can be simplified as:
at ot : 2 2\1/2 ot -1 b
ae’’ cos(wt) + be’ sin(wt) = (a” + b7) /"¢’ cos|wt — tan™" | —
a

where a and b are real numbers.

1 ¢t 22 ... " Yn-1)
01 ¢ .. "2 (n—2)

A |00 1 o T3 (n=3)) | (2.4c)
0o 0 ... ... 01

if A; is an n-dimensional bidiagonal matrix of (1.10b).

Figure 2.1 plots all different waveforms of (2.4). In the figure, an
eigenvalue (or a pole) is indicated by a symbol “x” and its coordinative
position, and the corresponding waveform of this eigenvalue is plotted near
that position. We can derive the following important conclusions directly
from Fig. 2.1.

Definition 2.1

A system is asymptotically stable if and only if for any initial state x(0) the
system’s zero-input response e4’x(0) converges to zero.

Conclusion 2.1

From Fig. 2.1, a system is asymptotically stable if and only if every system
pole (or dynamic matrix eigenvalue) has a negative real part. We will refer to
“asymptoticsstable’’sas:*‘stable’’sinsthesrest of this book.
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Figure 2.1 Possible system poles and waveforms of their corresponding
system response.

Definition 2.2

The system response (2.1) of an asymptotically stable system always reaches
a steady state, which is called “‘steady state response’ and which is often the
desired state of response. The system response (2.1) before reaching its
steady state is called ‘“‘transient response.” Therefore, the faster and the
smoother the transient response, the better (higher) the performance of the
system.

Conclusion 2.2
From (2.1), the transient response is mainly determined by the term e,
Some conclusions about system performance can be drawn from Fig. 2.1.

(a) The more negative the real part ¢ of the system poles, especially
thespolesswithsleast:negative;o, the faster the corresponding term
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e’ converges to zero, and therefore the higher the system

performance.

(b) For complex conjugate system poles, the larger the imaginary
part w of the system poles, the higher the oscillation frequency @
of the corresponding transient response, and the faster that
response reaches its first zero. However, the oscillatory feature of
response is generally undesirable regarding the smoothness
requirement (see Definition 2.2).

(c) Multiple poles generally cause slower and rougher transient
response.

We define stability, and the fastness and smoothness of the system
transient response, as the main measures of system performance. Conclu-
sions 2.1 and 2.2 indicate that the system poles determine system
performance most directly, accurately, and comprehensively.

For the first-order system examples from Example 1.3, the systems are
stable because their only pole 4 is negative. Furthermore, the more negative
the 4, the smaller the time constant |1/4], and the faster the zero-input
response and zero-state response reach zero and steady state (= —FB/1),
respectively. Furthermore, the first-order systems do not have multiple
eigenvalues. Hence their responses are smooth.

In classical control theory, the system performance is measured by
bandwidth (BW). Assume a second-order SISO system has complex
conjugate poles ¢ =+ jwy:

2

G(s) = [s — (o 4 jwo)] [I; — (0 —jowo))
w;
T2 (—20)s + (6% 4+ w3) (2.5a)
w?

n
= 82 4 2{w,s + w2

where

op=(P+0d)?  and  (=-2(0<{<1) (2.5b)

n

The magnitude of frequency response |G(jw)| of this system (also
called-an:*‘underdamped-system’’)sissshown in Fig. 2.2.
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Figure 2.2 Frequency response of an underdamped system.

Figure 2.2 shows that as frequency w increases from 0 to infinity, the
function |G(jw)| starts at 1 and eventually decays to 0. The bandwidth is
defined as the frequency w at which |G(jw)| = 1/v/2~0.707. Figure 2.2
shows that [Chen, 1993]

BW=x1.6mw, — 0.6w, when { = 0.1 — 1 (2.6)

In other words, BW is proportional with respect to w,, or |¢| and |wy|.
Therefore from Conclusion 2.2, the wider the bandwidth, the higher the
performance (generally) of the system.

However, relation (2.6) is based on a rather strict assumption (2.5) of
the system, and the indication of BW is indirectly derived from Conclusion
2.2. The bandwidth, although it is simpler to measure, is generally far less
accurate than the system poles in indicating the system performance. If this
tradeoff in accuracy was formerly necessary because of the lack of effective
computational means, the development of computer-aided design (CAD)
capability has obviated this necessity.
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Example 2.1 Zero-Input Response of two Third-Order Systems

Let the dynamic matrices of two systems be

The two matrices have the same eigenvalues —1, —1, and —2, but different
Jordan forms.

10 0][-1 1 0][1t 0 0
Al=ViMTi=|—1 12 0| 0 -1 0of[2 2 0
-1 12 1/ 0 o0 —2]][2 ]

=V, diag{A1, A2} T
! 0 O0][-1 o oO][L 0 O
Ay = VHAT, = | —1 /2 0 0 -1 0|2 2 0
-1 —12 1] 0 0o —2f[2 1 1

=V, diag{As1, Axn, A3} T

From (2.4),

From (2.1)~(2.2), for a common initial state x(0) =[1 2 3], the zero-
input response for the state x(z) is

e '+ 6te!

eli’x(0) = 2e! — 6re™! and
—4e~! —6te™" + Te

e—l

e'x(0) = 2e!

| —de '+ Te ™

The.waveformsyof-thesestwosfunctionssare shown in Fig. 2.3.
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(b) t

Figure 2.3 Waveforms of state zero-input responses of two systems with
same poles.
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The second waveform is remarkably better than the first in terms of
both fastness and smoothness. This is caused by the only difference between
the two systems: there is a generalized eigenvector (for eigenvalue —1) for
the first dynamic matrix and none for the second dynamic matrix. This
difference cannot be reflected by the transfer function model G(s).

From (2.2), the difference in the function e’ inevitably makes a
difference in the system’s zero-state response. Hence the state space model
can also describe the zero-state response (the transient part) more explicitly
than the transfer function model, even though the transfer function model is
defined from the system’s zero-state response only.

Example 2.2 Zero-State Response of a Third-Order System

-1 3 07 To
5/3 0 1

4,B,C)=||-3 -1 of,|1],
(155 sbff s )

Because matrix 4 is already in Jordan form, we apply (2.4a, b) directly and
get

Let

At

e’ = | —e'sin(37r) e'cos(3r) O

e ‘cos(3f) e 'sin(3r) O
0 0 e 2
Then from (2.1), for a unit step input (u(¢) =1,7>0), the zero-state
response of x(7) is

! 3/10 4 (1/4/10)e " cos(31 — 198°)
x(1) = /eA(’_T>B dr=|1/10 4+ (1//10)e " cos(3t — 108°)
0 1/2—(1/2)e™

The waveform of x(¢) and the corresponding system output y(z) A [y1(f)
(1) = Cx(¢) are shown in Fig. 2.4. N

The waveforms all start at zero, which conforms to the assumptions of
zero initial state and of finite power input signal. The waveforms of states
x1(f) and x;(r) oscillate with period 2n/w = 2n/3 a2 before reaching their
respective steady states 0.3 and 0.1. This feature conforms with Conclusion
2.2 (Part B).
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Figure 2.4 The zero-state response of system state and of system output,
due to unit step input.

The above result on steady state of system output y(¢) can also be
directly.derived fromythe system’s transfer function model.
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Figure 2.4 (Continued)

From (1.9),

G(s)=C(sI —A)'B

A{gl(s)] B 1 { s2 4+ 7s+ 20 }
— o)l (22+25+10)(s+2) | 652 + 175420
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From (1.7), y(¢) equals the inverse Laplace transform of Y (s) = G(s)U(s)
= G(s)/s (for unit step input). In addition, from the final value theorem of
the Laplace transform, the constant steady state of y(z) can be derived
directly as

y(t = ) = EgrasY(s) =[1 17

This result is in accordance with Fig. 2.4. This derivation shows that the
classical control theory, which concentrates on system input/output
relations especially at steady state, is easier than the state space control
theory for deriving steady state response.

However, in measuring the transient part of this input/output relation,
the bandwidths of g (s) and g»(s) (3.815 and 9.21, respectively) are incorrect
because y|(¢) and y,(7) reach their steady state at about the same time. In
addition, the waveform of y,(7) is noticeably smoother than that of y,(7) in
Fig. 2.4. Overall, based on the actual step responses y;(7) and y»(r), system
gi1(s) is certainly much more preferable than system g»(s), yet the
corresponding BW; is two and a half times narrower than BW,.

2.2 SYSTEM SENSITIVITY AND ROBUSTNESS

Whereas the previous section showed the critical importance of system poles
(eigenvalues of system dynamic matrix) on system performance, this section
is based on a basic result of numerical linear algebra that the sensitivity of
eigenvalues is determined by their corresponding eigenvectors.

Numerical linear algebra, which has not been commonly used in the
existing textbooks on control systems, is a branch of study which
concentrates on the sensitivity of linear algebraic computation with respect
to the initial data variation and computational round-off errors [Fox, 1964].
Because linear algebra is the basic mathematical tool in linear control
systems theory, the results of numerical linear algebra can be used directly in
analyzing linear system sensitivities. Some basic results of numerical linear
algebra have been introduced in Appendix A.

Let us first define the norm ||4]|| of a matrix

app -+ dip
A:

Aml - Omn

The norm of a matrix can provide a scalar measure to the magnitude of the
matrix.
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Before establishing the matrix norm, it is necessary to establish the
norm ||x|| of a vector x = [xy,...,x,]’, where the vector elements x; (i =
1,...,n) can be complex numbers. Like the absolute value of a scalar
variable, the vector norm ||x|| must have the following three properties
[Chen, 1984]:

I. |Ix||=0 and ||x|| =0 if and only if x =0
2. |lex|| < |al||x||, where a is a scalar
3. |Ix+ylI<|x]| + |ly]l, where y is also an n-dimensional vector

The third property is also called “triangular inequality.”

Definition 2.3
The vector norm ||x|| is defined as follows:

Lo =l getbol

20 X[l = (X" + - F [xal) 2 = (x*x)"? (“*> stands for trans-
pose and complex conjugate operation)

3. Il = max; x|

In most cases only the norm ||x||, is being used. Therefore ||x|| is the default
of vector norm ||x||, in this book unless specified otherwise.

Vector norms have the following common and important property
(Cauchy—Schwartz inequality) [Chen, 1984]:

X"yl = Iy*x|<[x]lllyl (2.7)

The matrix norm || 4|, where the entries of matrix 4 can be complex
numbers, must also have the following four properties:

I. ||4||=>0 and ||4]| =0 if and only if 4 =0

2. |lad]|| = |a|||4||, where a is a scalar

3. |l4+ B||<||4]| + || B||, where B is a matrix of same dimension

4. flax| <[4l (2.8)

Based on the above properties, especially (2.8), there can be three different
definitions of matrix norm || 4|| according to the three different vector norms
of Definition 2.3, respectively [Chen, 1984].
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Definition 2.4

L4, = max {layl+ - + |an!}

2. ||4|l, = max{(eigenvalue of(A*A))l/z}
= max{singular value of A} (2.9)
3. Al = max; {Jai| + -+ - + [ai| }

Unless specified otherwise, ||A|| is the default of ||4]|,, which is also called
the “spectrum norm.”

There is another commonly used matrix norm || 4|, which is called
the “Frobenius norm” and is defined as follows:

1/2
4. ||A|F:<Z|a,«j2> = [Trace(A* 4)]'/? (2.10)

where the matrix operator “Trace” stands for the sum of all diagonal
elements.

Based on the singular value decomposition of a matrix with m>n (see
Appendix A, Sec. A.3),

A=UTV* = U[ZOI]V*

where X = diag{singular values of 4 : 6;(i = 1,...,n)}, U*U = I,V*V =1,
and 01 >0,> -+ 20,=0. Then from (2.9-2.10),

147 = [Trace(=*x)]"/2

= (a%+---+a§)1/2{ <Vnoi = /i Al (2.11a)
>0 = [ ll, (2.11b)

Equation (2.11) is useful in estimating the matrix spectrum norm.

Definition 2.5
Condition number of a computational problem:

Let A4 be data and f(A4) be the result of a computational problem f(A4).
Let:AA-be thevariationsof data-4-and-Af be the corresponding variation of
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result /(A4) due to A4 such that
f(A+AAd) =f(A) + Af

Then the condition number x(f) of the computational problem f(A) is
defined by the following inequality:

A7 _ x()lA4]
A

Therefore, x(f) is the relative sensitivity of problem f with respect to the
relative variation of data 4. A small x(f) implies low sensitivity of problem
f, which is then called a “well-conditioned problem.”” On the other hand, a
large k(f) implies high sensitivity of the problem f, which is then called an
“ill-conditioned problem” [Wilkinson, 1965].

(2.12)

Example 2.3 [Wilkinson, 1965; Tsui, 1983b]
Let the computational problem be the computation of solution x of a set of
linear equations A4x = b, where 4 and b are given data.

Let Ab be the variation of b (no variation of 4). Then A(x + Ax) =
(b + Ab) implies that

JAX]| = |14~ Ab]| < |4~ | Ab]

Thus from (2.8),

PINEE
|ax Y

<fAlA S
I [b]

From Definition 2.5, this inequality implies that the condition number of
this problem is ||A[||| 47"

Suppose in the same problem that AA is the variation of 4 (no
variation of b). Then (4 + AA4)(x + Ax) = b implies (assuming ||AA4AAX|| is
very small):

Ax = A7 (—AA4x)

Thus-froms(2:8)suifAxi/Axdpss k447! || AA4] /|| A]|. From Definition 2.5,
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this inequality again implies that the condition number of this problem is
lAlIA= -

Because of the result of Example 2.3, we define the condition number
of a matrix 4 as

() = ||l 47 (2.13)

In the following we will first analyze the sensitivity of the eigenvalues of
system dynamic matrix, and then use this result to analyze the sensitivity of
system stability property.

2.2.1 The Sensitivity of Eigenvalues (Robust Performance)

Robust performance is defined as the low sensitivity of system performance
with respect to system model uncertainty and terminal disturbance. Because
Sec. 2.1 indicated that the eigenvalues of system dynamic matrix (or system
poles) most directly and explicitly determine system performance, it is
obvious that the sensitivities of these eigenvalues most directly determine a
system’s robust performance.

From (1.10), V1AV = A, where matrix A is a Jordan form matrix
with all eigenvalues of matrix 4. Therefore, if 4 becomes A4 + AA, then

VU A+AA)V = A+ VA4V A A+ AA (2.14)
IAA<IVINY - IIAA4]] A (V)| A4] (2.15a)

Inequality (2.15a) indicates that the condition number x(V) of
eigenvector matrix ¥ can decide the magnitude of ||AA||. However, AA is
not necessarily in Jordan form, and hence may not accurately indicate the
actual variation of the eigenvalues.

Based on (2.14), a result using x(7) to indicate the variation of
eigenvalues was derived by Wilkinson (1965):

min {|4, — 2]} A min {|AZ]} <x(V)[A4]| (2.15b)

where 4; (i =1,...,n) and 1 are eigenvalues of matrices 4 and (4 + AA4),
respectively. Because the left-hand side of (2.15b) takes the minimum of the
difference A4; between the eigenvalues of 4 and 4 + AA, the upper bound
on the right-hand side of (2.15b) does not apply to other AJ;’s.

To summarize, from (2.15), it is still reasonable to use the condition
numbergofyeigenvectorpmatrixgl/wof, matrix 4, x(V), to measure the
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sensitivity of all eigenvalues (A) of matrix 4, s(A). In other words, we define
s(A) A (V) = VIl (2.16)

even though s(A) is not an accurate measure of the variation (sensitivity) of
each individual eigenvalue. The advantage of this measure is that it is valid
for large ||AA| [Wilkinson, 1965].

In order to obtain a more accurate measure of the sensitivity of
individual eigenvalues, first-order perturbation analysis is applied and the
following result is obtained under the assumption of small ||AA4|| [Wilkinson,
1965]:

Theorem 2.1

Let 4;,v;, and t; be the i-th eigenvalue, right and left eigenvectors of matrix
A, respectively (i = 1,...,n). Let 4; + Al; be the i-th eigenvalue of matrix
A+ AA (i=1,...,n). Then for small enough ||AA]],

A< |tl[[villl[A4]l A s(Z)[|A4]l,  i=1,....n (2.17)

Proof

Let A4 = dB, where d is a positive yet small enough scalar variable, and B is
an nxn dimensional matrix. Let 4;(d) and v;(d)(i =1,...,n) be the i-th
eigenvalue and eigenvector of matrix 4 + dB, respectively. Then

(A + dB)vi(d) = A(d)vi(d) (2.18)

Without loss of generality, we assume i = 1. From the perturbation theory,

J(d) = A+ kid + kad® + - -- (2.19a)
and
vi(d) =vi+ (bava+ -+ bava)d + (bava + - + LoV )d” + -+
(2.19b)
wherekpandsip(i==2ymmytiygi=sls2529.) are constants. For small enough d
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(or AA), (2.19) can be simplified as

A(d)=A + kid é A+ AL (2.20a)

and
vi(d)=vi+ (biva+ -+ Lavy)d (2.20b)
Substituting (2.20) into (2.18) and from Av; = A;v; and d*> < 1, we have
(A2 = A)bava + -+ 4+ (A — A1)l Ve + Bvi]d = kyvid (2.21)
Multiplying t; (t;v; = J;;) on the left of both sides of (2.21), we have
t1Bvy =k
From (2.20a) and (2.8),
A ] = [tBvid| <[t [l[lvi[[lldBl] = [t [[Ive ][ [AA]

The derivation after (2.18) is valid for other eigenvalues and eigenvectors.
Hence the proof.

This theorem shows clearly that the sensitivity of an eigenvalue is
determined by its corresponding left and right eigenvectors. From now on,

we will use the notation s(/;) to represent the sensitivity of 4;, even though
s(4;) is not the condition number of A; as defined in (2.13).

Example 2.4

Consider the following two matrices:

A,
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and

n n 0 07
0 n—1 n 0
0 n—2 n
Ay =
0
2 n
0 0 0 0 1
Clearly, the two matrices have the same set of eigenvalues {n,n — 1,...,1}.

The right and left eigenvector matrices are:

—X3 X3 —X4 ... (—1)"_1x,,-
0 1 —X2 X3 (—1)"_2x,,_1
0 0 1 —x ... (=1)"x.
V=
—X3
0 0 0 0 1 i
and
rl x x3 ... X, ]
0 1 X2 Xn—1
0 0 1
T =
X2
LO 0 0 1
where

for Ay :x;=x;/(i—1)=1/(i-1i=2,...,n/(x; =1),0r
x2=1x3=1/2Lx4=1/3l,...,x,=1/(n—1)};
for Ay :x;=nx;i /(i—1)=n""/(i=1DLi=2,...,n(x =1),

or Xy =mx3=n"/2,...,x, =n"""/(n—1).

ers (x;,i =1,...,n) are much greater
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for A, than for 4;. From (2.17), the sensitivity of the eigenvalues of A4, is
much higher than that of 4;.
For example,

s(Ze = n) = |t ll[lvill = [valllltall = s(42)
= (43 +--+D)721)
(14 (127 +-+1/(n—=1)1)"2x1 (for 4))
=9 (L + 022+ + [ (n = 1)) (2.22a)
~n" '/ (n—1)! (for 43)

S(na = n/2) = |tupal[ Va2l = IVap2)e1 It 11 | = $(As2)41)
1/2 1/2
= (L4 +x241) 2a +o X)) /

~{ (1) =1 (for 4))

(2 ()20 (For A2) (2220)

The values of s(/;) are much greater for A, than for 4;. For 4, all
s(4;) values are close to 1 (i=1,...,n). Thus every eigenvalue of 4, is
almost the least possibly sensitive to the parameter variation of A4;, and the
computations of these eigenvalues are therefore all well conditioned. On the
other hand, the s(/;) for 4, equals 5.2, 275, and 2.155x 10° for i = 1 and
n =5, 10, and 20 respectively, and equals 6.944 x 10° and 8 x 10'? for i =
n/2 and n = 10 and 20, respectively. Thus the eigenvalues (especially 4,/,) of
A, are very sensitive to the parameter variation of A,. Therefore the
computations of the eigenvalues of A, are ill conditioned.

The difference between matrices 4, and A4, is at the upper diagonal
line. From Example 1.5 and (2.4¢), the upper diagonal elements of 4; and
A, are the coupling links between the eigenvalues of 4; and A,. Therefore
the weaker these coupling links, the smaller the norm of each row of matrix
T (= V') computed from all columns of matrix V, and the lower the
sensitivity of each eigenvalue.

From another point of view, the weaker the coupling links, the weaker
the effect of the matrix parameter variation on the corresponding
eigenvalues (see Gerschgorin’s theorem [Wilkinson, 1965]). An even more
direct inspection of the original matrices 4; and A, shows that the smaller
these upper diagonal elements, the closer the matrices to Jordan form, and
therefore the lower the sensitivity of their Jordan forms to the variation of
these two matrices. This observation is not generally valid for other
matrices.

Copyright 2004 by Marcel DekKer, Inc. All Rights Reserved.



To summarize, this example shows that decoupling is extremely
effective in lowering eigenvalue sensitivity. It is common sense that if a
system relies more heavily on more system components in order to run, then
that system has higher sensitivity with respect to these system components.
Although the coupled systems usually have higher performance.

The theoretical analysis on the sensitivity of eigenvalues of 4; and A4,
can be shown by the following example of A4 [Wilkinson, 1965; Chen,

1984]. Let
0 0 0
Ad=dB=|" :
0 0 0
d 0 0
Then

detlil — (A +AA) = (A —n)---(A=2)(A—1)+d(-1)""
and
det[il — (Ay + AA)] = (A—n)---(A=2)(A—1)+d(—n)""

Hence the constant coefficient of characteristic polynomial is affected
by the above data variation d (or AA4), and this effect is much more serious
for 4, than for A;. A root locus plot (with respect to d) in Chen [1984]
demonstrates the sensitivity of the eigenvalues of 4, vs. d.

Readers can also refer to Wilkinson [1965] for more theoretical
discussions on A4,. However, the comparison of 4, and A4, in this book
offers a clearer explanation for understanding the eigenvalue sensitivity of
this example.

2.2.2 The Sensitivity of System Stability (Robust Stability)

Stability is the foremost system property. Therefore the sensitivity of this
property (called “robust stability’’) with respect to system model uncertainty
is also critically important. Consequently, a generally accurate quantitative
measure of this sensitivity is also essential to guide robust stability analysis
and design.

From Conclusion 2.1, the most basic and direct criterion of system
stability is that every dynamic matrix eigenvalue has a negative real part.
Hence the sensitivity of these eigenvalues with respect to system model
uncertaintys(or-dynamicsmatrixsvariation) should be the most direct and
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critical factor in measuring the sensitivity of system stability (robust
stability).

Let us compare the Routh-Hurwitz criterion of system stability,
where the system characteristic polynomial must be first computed. The
sensitivity of this step of computation can be as high as the direct
computation of eigenvalues (see Wilkinson, 1965 and Examples 1.6 and
2.4). The Routh—Hurwitz criterion requires additional determination based
on the characteristic polynomial coefficients and on the basic stability
criterion of Conclusion 2.1. This indirectness will inevitably reduce the
accuracy of both the stability determination and the measure of robust
stability.

Let us compare another stability criterion, the Nyquist criterion. This
criterion also requires two general steps. The first step plots system
frequency response G(jw) (v = 0— o0). The second step applies the Nyquist
stability criterion, which is based on the basic criterion of Conclusion 2.1
and on the Cauchy integral theorem, on the plot of step one. Both steps are
indirect with respect to Conclusion 2.1 and will cause inaccuracy in each
step. Stability is an internal system property about the convergence of a time
domain response, while the Nyquist criterion determines this property based
on the information of system’s input/output terminal relation in frequency
domain. Because of this fundamental reason, the Nyquist criterion is very
difficult to apply to multivariable systems [Rosenbrock, 1974; Hung et al.,
1979; Postlethwaite et al., 1982; Doyle et al., 1992], and its corresponding
robust stability measures (gain margin and phase margin) are not generally
accurate [Vidyasagar, 1984].

In this book, the result of sensitivity of system poles of Sec. 2.2.1 is
used to measure robust stability. Compared to the above two robust
stability measures of classical control theory, this measure has not only the
apparent advantage of general accuracy, but also another critical
advantage—the ability to accommodate pole assignment and thus to
guarantee performance. The analysis in Sec. 2.1 shows that system poles can
most directly and explicitly determine the corresponding system perfor-
mance.

As stated in the beginning of this chapter, performance and
robustness are the two contradictory yet critical properties of a practical
engineering system. Therefore, it would be very impractical to concentrate
on only one of these two properties [such as pole assignment only or
sensitivity function [/ — L(s)]”' (see Sec. 3.1) only]. The main purpose of
this book is to introduce a new design approach which can really and fully
consider both properties.

There are three existing robust stability measures using the sensitivity
of systemspoles:lnsthissbooks-they-arescalled M;, M,, and M;. Among the
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three measures, M| and M, were developed in the mid 1980s [Kautsky et al.,
1985; Qiu and Davidson, 1986; Juang et al., 1986; Dickman, 1987
Lewkowicz and Sivan, 1988], and M; was developed in the early 1990s
[Tsui, 1990, 1994a]. We will analyze and compare the general accuracy and
the optimization feasibility of these three measures.

Let us first introduce these three measures.

M, = 0Lnin {o(4 — joI)}, (¢ equals the smallest singular value)
<Kw<wo
(2.23)
M = s(A) " Re{ 2.}, (Re{Z,}| < - <[Re{i1}]) (2.24)
M3 = min {s(2) " Re{ )|} (2.25)

where all eigenvalues are assumed stable (Re{4;} < 0,Vi). In addition, we
assume all eigenvalues are already arbitrarily assigned for guaranteed
performance.

We will analyze these three measures in the following. All three
measures are defined such that the more robustly stable the system, the
greater the value of its robust stability measure.

Because ¢ indicates the smallest possible norm of matrix variation for
a matrix to become singular (see Theorem A.8), M, equals the smallest
possible matrix variation norm for the dynamic matrix 4 to have an
unstable and pure imaginary eigenvalue jw. Therefore M; should be a
generally accurate robust stability measure.

The main drawback of M; seems to be its difficulty to design. For
example, it is very difficult to design a matrix K such that the M of matrix
A — BK is maximized, where matrices (4, B) are given and the eigenvalues
of A — BK are also prespecified to guarantee the desired performance. In the
existing analysis about maximizing M, the only simple and analytical result
is that M will be at its maximum possible value (= |Re{4,}|) if s(4,) is at its
minimal value (= 1) [Lewkowicz and Sivan, 1988]. Unfortunately, this is
impossible to achieve in most cases.

In the measure M>, the term |[Re{4,}| is obviously the shortest distance
between the unstable region and the eigenvalues A4; on Fig. 2.1. M, equals
this distance divided (or weighted) by the sensitivity of all eigenvalue matrix
A. The lower the sensitivity s(A), the greater M>. In other words, M, may be
considered as the weighted distance for 4, to become unstable, or as the
likelihood margin for 4, to become unstable.

There exist several general and systematic numerical algorithms which
canscompute:matrix-K-suchsthatsthe-value of s(A)~' or M, is maximized,
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with arbitrarily assigned eigenvalues in matrix 4 — BK [Kautsky et al., 1985;
MATLAB, 1990]. However, M, seems to be less accurate in measuring the
likelihood margin for 4, to become unstable, because s(A) is not an accurate
measure of the sensitivity of A, [see the discussion of (2.14)].

In the definition of measure M3, the likelihood margins for every
eigenvalue to become unstable are considered. Here the likelihood margin

for each A; equals |Re{/;}| divided by its corresponding sensitivity
-1

s(4:),i =1,...,n. In practice, the algorithms for maximizing M, (or s(A)
= xk(V)™") can also be used to maximize M3, after adding a weighting factor
IRe{;}|”" on each column v; of matrix V,i=1,...,n.

Based on the above analysis and some basic principles, there are two
obvious reasons that M3 is generally more accurate than M; and M.

First, M| and M, consider only the likelihood margin for 4, to become
unstable, while the instability of any eigenvalue can cause system instability
(Conclusion 2.1). Therefore M; measures the robust stability more
completely and more rigorously than M; and M.

Second, the s(A) of M, is generally not an accurate measure of
individual eigenvalue sensitivity and is obviously not as accurate as the
sensitivity s(4;) of 4; itself in measuring the sensitivity of 1;,V; (including
i = n). Hence M, is too conservative compared to M3. This is reflected in the
following lower bound of M3, even though M3 more completely and
rigorously reflects the instability likelihood of all eigenvalues.

SsA) A VIV Ivllle] A s(a) =10 =1, (2.26)
oMy = s(A) ' Re{ 4} < M3 <|Re{/,}| (2.27)

It has been proved that M shares the same upper and lower bounds with
M; [Kautsky et al., 1985; Lewkowicz and Sivan, 1988].

From (2.26-2.27), if the overall eigenvalue sensitivity s(A) = k(¥ is at
the lowest possible value (= 1), then all three measures M; (i = 1,2, 3) will
reach their common highest possible value |[Re{Z,}|. However, it is
impossible to make s(A) = 1 for most cases. In those cases, a lower s(A)
does not necessarily imply a higher M/ or M3 [Lewkowicz and Sivan, 1988].
Furthermore, in those cases, (2.27) implies that M| and M3 have higher
resolution and therefore higher accuracy than M.
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Example 2.5 [Lewkowicz and Sivan, 1988; Tsui, 1994a]

Let

-3 0 0 -3 0 0
A =145 =2 0 and A,=|15 =2 0
0 0 -1
The two matrices have same eigenvalues but different eigenvectors.
Hence the eigenvalue sensitivity as well as the robust stability are different
for these two matrices.
The eigenstructure decomposition of these two matrices are

A1:V1A1T1
—0.217 0 0][-3 0 0][461 0 07 (|t =4.61)
=1-0976 1 0 0 -2 0|[45 1 0f(tz]] =4.61)
0 01 0 0 -1 0 0 1] (tsl=1
and
Ay = VAT

04264 0 0]7[-3 0 07][2345 0 07 (|t] =2.345)
=1-0639 1 0 0 -2 0] 1.5 1 0] (|t]=1.803)
—0.6396 0 1 0 0 -1 L5 0 1] (|[ts] =1.803)

In the above result, the norm of every right eigenvector in V" matrix equals
one. Thus from (2.17), the eigenvalue sensitivity s(4;) equals the norm of the
corresponding left eigenvector |[|t;||, which has been listed along with the
corresponding vector above.

Based on this result, the values of M; (i =1,2,3) are calculated in
Table 2.1.

The inspection of the two matrices shows that unlike in A,, the
Jn (= —1) in A4; is completely decoupled and thus has sensitivity s(—1) = 1.
This feature is reflected by M, which reaches its maximal value for 4, and is
considered by Mj also. Also, unlike A4,, A has a large element (4.5) which
causes higher sensitivity of other two adjacent eigenvalues (—2, —3) of 4; as
well as a higher value of s(A). This feature is reflected by a smaller value of
M, for A, and is considered by Mj; also. Therefore, only M; can
comprehensively-reflect:thesestwosconflicting features about robust stability.
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Table 2.1 Robust Stability Measurements of Two Dynamic Matrices

Aj Az
M, 1 0.691
My =s(A)"| =1 0.1097 0.2014
s(=1)"" 1 0.5546
s(=2)"" 0.2169 0.5546
s(=3)7" 0.2169 0.4264
M; s(-2)7'| -2/ =0.4338 s(=1)7"| — 1| = 0.5546

From the definition of M3, for matrix 4,, eigenvalue —2 has the
shortest likelihood margin (0.4338) to instability and therefore is most likely
to become unstable, even though the eigenvalue A, = —1 is closest to
unstable region. Thus for matrix 4, M3 has considered accurately the low
sensitivity of its 4, while M, has not, and M3 has considered the high
sensitivity of other eigenvalues while M, has not.

Overall, matrices 4, and A4, are quite similar—with one element 4.5 in
A, being divided into two elements (1.5 and 3) in 4,. Hence a reasonable
robust stability measure should not differ too much for these two matrices.
We notice that this is the case for M3 but not for My or M.

This example shows quite convincingly that M3 is considerably more
accurate than M, and M,.

Although maximizing M, or minimizing s(A)(= || V||[|V~!||) may not
improve robust stability as directly as maximizing M3, it also implies in a
simple, scalar, and unified sense the improvement of other system aspects
such as the lowering of feedback control gain ||K|| and the smoothing of
transient response (see Chap. 8 and Kautsky, 1985). Both aspects are very
important, especially when the dynamic matrix eigenvalues are already
assigned.

We have mentioned that the numerical algorithms used to minimize
s(A) can also be used to maximize Mj;. In addition, there is an analytical
method for improving M3. This method is based on the possibility of simple
decoupling of the feedback system eigenstructure into p blocks (p = number
of system inputs). The decoupling is extremely effective in improving the
system’s robustness. For example, the eigenvalue —1 of Example 2.5 is
completely decoupled in matrix 4; and thus has the lowest possible
sensitivity. Example 2.4 also shows convincingly the strong effect of
coupling on eigenvalue sensitivity.

Copyright 2004 by Marcel DekKer, Inc. All Rights Reserved.



CONCLUSION

State space control theory provides distinctly general, accurate, and clear
analysis on linear time-invariant systems, especially their performance and
sensitivity properties. Only this kind of analysis and understanding can be
used to guide generally and effectively the design of complex control
systems. This is the reason that linear time-invariant system control results
form the basis of the study of other systems such as nonlinear, distributive,
and time-varying systems, even though most practical systems belong to the
latter category.

This is also the reason that the development of state space control
theory has always been significant and useful. For example, because of the
lack of accurate measure of system performance and robustness, the direct
design of loop transfer function has not been generally effective (see also the
end of Secs. 3.1 and 9.3). Starting with the next chapter, we will see that
there are basic, practical, and significant design problems which can only
now be solved satisfactorily using state space techniques.

EXERCISES

2.1 Let the dynamic matrices of two systems be

—1 1 0 -1 0 O
Ay = 0 -1 -1 and Ay = 0 -1 1
0o 0 -2 0o 0 -2

(a) Based on the eigenstructure decomposition of Exercise problem
1.7 and based on (2.4), derive the time function e i = 1, 2.

(b) Derive e using e = ' {(sI — 4;} "' }(i = 1,2).

(c) Derive zero-input response e?’x;(0) with x;(0)=1[1 2 3]
(i=1,2). Plot and compare the wave forms of these two
responses.

2.2 Repeat 2.1 for the two matrices from Example 2.5.
2.3 Consider the system

A,B=1[0 1 —1] and c:[(l) (1) :}]

where matrix 4; is similar to that of 2.1 above.

Copyright 2004 by Marcel DekKer, Inc. All Rights Reserved.



24

2.5
2.6
2.7
2.8

(a) Using (2.1) and the result of 2.1, derive the zero-state response of
the two outputs of this system for unit step input.

(b) Using (1.7), y(t) = LY Y.4(s) = G(s)U(s) = G(s)/s} derive y(1),
where G(s) is derived based on (1.9).

(c) Compute the bandwidth for the two elements of G(s).

(d) Plot and compare the waveforms of the two outputs.

Analyze the robust stability of the two systems from Example 2.1.

Notice that for eigenvalue A within a Jordan block larger than
1 x 1, the corresponding sensitivity s(1) should be modified from (2.17)
[Golub and Wilkinson, 1976]. A simple method is to add together
sensitivities (2.17) of all eigenvalues within a same Jordan block.

For example, in matrix A;, suppose the first two left and right
eigenvectors are t,ty,vy,v, and correspond to a multiple eigenvalue
Z1(=—1) in a 2x 2 Jordan block, then

s(a) = I llvill + lellliv2ll (= (1D(V3) + (V8)(v/1/2))

Repeat 2.4 for the two dynamic matrices from 2.1.

Verify the expression (2.22) from Example 2.4.

Verify the conclusion from (2.26) to (2.27).

Repeat Exercises 2.1 and 2.4 for the following dynamic matrices.
Compare the results.

-3 0 0][-3 0 0][3 0 o0
3 -2 0,3 =2 of,| 2 -2 of,

15 0 -1 |15 0 —1] [25 0 -1

(-3 0 0] [-3 0 0]

25 =2 0|,|-2 -2 0

2 0 -1 |25 0 —1]
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3

Feedback System Sensitivity

The feedback system discussed in this book consists of two basic subsystem
components—an ‘“‘open-loop system,” which contains the given “plant
system,”” and a feedback controller system, called a “‘compensator.”” Hence
the analysis of such feedback systems is different from that of a single
system.

Of the two critical properties of performance and low sensitivity
(robustness) of feedback systems, sensitivity has been less clearly analyzed in
state space control theory. It is analyzed in this chapter, which is divided
into two sections.

Section 3.1 highlights a concept in classical control theory about
feedback: system-sensitivity—the-decisive role of loop transfer function in
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the sensitivity of feedback systems. This concept will guide the design
throughout this book, even though the focus remains on state space models
of the systems.

Section 3.2 analyzes the sensitivity properties of three basic and
existing feedback control structures of state space control theory—direct
state feedback, static output feedback, and observer feedback. The emphasis
is on the observer feedback structure, which is more commonly used than
other two structures. A key design requirement on the robustness property
of this structure, called loop transfer recovery (LTR), is introduced.

3.1 SENSITIVITY AND LOOP TRANSFER FUNCTION OF
FEEDBACK SYSTEMS

The basic feedback control structure studied by control systems theory is
shown in Fig. 3.1.

In this system structure, there is a feedback path from the plant system
output Y(s) to input U(s) through a general feedback controller system,
called “compensator” H(s). Here R(s) and D(s) are Laplace transforms of
an external reference signal r(s) and an input disturbance signal d(7),
respectively.

The plant system, which is subject to control, is either G(s) itself or a
component system of G(s) and with output Y(s). In this book, we will
generally treat the plant system as G(s). Hence the controller to be designed
is H(s).

The structure of Fig. 3.1 is very basic. For more complicated control
system configurations, the analysis and design is usually carried out block by
block and module by module, with each block (or module) structured like
Fig. 3.1.

Because input U(s) can control the behavior of output Y(s), such
input is called “‘control input signal.”” Because the control signal usually

Figure 3:1.» The basic:structure of.feedback (closed-loop) systems.
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requires a large amount of power, there will very likely be disturbance
associated with the generation of U(s). This disturbance is commonly
treated in the system’s mathematical model of Fig. 3.1 as an additional
signal D(s).

The purpose and requirement of control systems is generally the
control of plant system output (or response) Y(s) so that it can quickly
reach and stabilize to its desired state, such as the desired vehicle and engine
speed, the desired radar and airborne system angle, the desired robot arm
position, the desired container pressure and temperature, etc. The desired
system output state is usually specified by the reference signal R(s). Hence
how well the system output reaches its desired state determines the
performance of the system.

The final steady state of system response is relatively easy to analyze
(using the final value theorem for example) and relatively easy to satisfy via
feedback control design. Hence the transient response properties (such as
the convergent speed) are critical factors to system performance and are the
main challenges of feedback control system design.

The most basic feature of the feedback control system structure of
Fig. 3.1 is that the control signal U(s), which controls signal Y(s), is itself
controlled based on Y(s). This feedback of Y(s) to U(s) creates a loop
which starts and ends at U(s), and whose transfer function called “loop
transfer function” is

L(s) = —H(s)G(s) (3.1)

We therefore call the feedback system a ““closed-loop system.” On the other
hand, a system without feedback [or H(s) =0] is called an “open-loop
system.” Figure 3.2 shows a block diagram where the control signal U(s) is
not influenced by its control object Y (s). The loop transfer function of this
system is

L(s) =0 (32)

D(s)
R(s)] + [::] Yl(s]

Figure 3.2 The structure of open-loop systems.
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A main difference between feedback control and control without
feedback concerns the sensitivity to the plant system mathematical model
uncertainty, defined as AG(s), and to the control input disturbance D(s).
This section shows that this difference is determined almost solely by the
loop transfer function L(s), which is created by the feedback configuration
itself.

To simplify the description of this concept, only SISO systems are
studied in this section. However, this basic and simple concept is general to
MIMO systems as well.

3.1.1 Sensitivity to System Model Uncertainty

In most practical situations, the given mathematical model (either state
space or transfer function) of the plant system is inaccurate. This is because
the practical physical system is usually nonlinear, and its parameters are
usually distributive and are difficult to measure accurately. Even for an
initially accurate model, the actual plant system will inevitably experience
wear-out and accidental damage, both of which can make the mathematical
model of the plant system inaccurate.

To summarize, there is an inevitable difference between the actual
plant system and its mathematical model G(s). This difference is called
“model uncertainty” and is defined as AG(s). Therefore, it is essential that
the control systems, which are designed based on the given available
mathematical model G(s), have low sensitivity to AG(s).

In single-variable systems, the transfer function from R(s) to Y (s) of
control systems of Figs 3.1 and 3.2 are, respectively

(3.3a)

and
T,(s) = G(s) (3.3b)

Let AT (s) be the uncertainty of overall control system 7'(s) caused by
AG(s). We will use relative plant system model uncertainty AG(s)/G(s) and
relative control system uncertainty A7(s)/T(s) to measure the overall
controlsystemysensitivitysvsaplantsystem model uncertainty.
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Definition 3.1

The sensitivity of a control system 7'(s) to AG(s) is defined as

s(T)lg = ‘228%8 (3.4a)
For small enough AG(s) and AT (s),

o>l o) (3.40)
Equation (3.4b) is the general formula for determining s(7')|;.

Substituting (3.3a) and (3.3b) into (3.4b), we have

1 1

<~ i |~ i~z (3.52
and

STl =1 (3.5b)

A comparison of (3.5a) and (3.5b) shows clearly that the sensitivity to the
plant system model uncertainty of a closed-loop system can be much lower
than that of the open-loop system. The difference is determined solely by
loop transfer function L(s).

Example 3.1 Sensitivity to the Uncertainty of Some
Individual Plant System Parameters

Let

and
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Then from (3.3),

T(s) = — &
e\ T s+ A4+ K
and
K
To(s)_s+/1

Thus from (3.4b),

) C|oT(s) K | |s+Ai+K-K K
RO T T s+ 2+ k) K[+ 2+ K)
1

TIT=L(s)

_oTe(s) K | | 1 K B
Tl = 12 o) ~ 652 K/(s—hl)’_
S O I R p
s(Te)ls = 04 Te(s)]  |(s+i+K)?K/(s+2+K)

=i (s+ )

| 1= L(s)

and

T 4| | -k p
=[5 | = 1K)

_ —i‘

)

Therefore, the sensitivity to either plant system parameter K or 4 of a closed-
loop system equals that of an open-loop system divided by 1 — L(s). For
open-loop systems, at s = 0, this sensitivity equals 1 = 100%, which is quite
high.

3.1.2 Sensitivity to Control Input Disturbance

As introduced in the beglnmng of this section, disturbance D(s) associated
b the 3 ergcontrol input U(s) is serious and
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inevitable. Therefore, a practical control system must have low sensitivity to
D(s).

In practice, the controller which actually generates and asserts the
control is usually called the ‘“‘actuator.”

From the superposition principle of linear systems, in the presence of
disturbance D(s) (£ 0), the closed-loop system (Fig. 3.1) and open-loop
system (Fig. 3.2) responses are

Yo(s) = 1f(?(s)]e(s) + lf(z)(s)z)(s) (3.60)
and

Yo(s) = G(5)R(s) + G(5)D(s) (3.6b)
respectively.

If among the respective two terms of (3.6a, b) the first term is
the desired control system response which follows R(s) and which is the
response when D(s) =0, then the second term is the deviation from
the desired response and is the sole effect of disturbance D(s). Therefore, the
gain (magnitude of transfer function) of this second term represents
the sensitivity of the corresponding system to D(s). The higher the gain, the
higher the sensitivity to D(s).

Definition 3.2

A system’s sensitivity to its control input disturbance is represented by its
gain from this disturbance to its output.

Similar to the conclusions from Subsection 3.1.1, a comparison of the
second terms of (3.6a) and (3.6b) shows clearly that the sensitivity to control
input disturbance of closed-loop systems can be much lower than that of
open-loop systems. The difference is an additional denominator 1 — L(s),
which is determined solely by loop transfer function L(s).

Example 3.2 Sensitivity to Output Measurement Noise

It is important to measure the sensitivity to output measurement noise. In
practical feedback control systems, besides the undesirable effect of control
input disturbance, there is another common and undesirable effect, caused
by output measurement noise. This noise is represented in the mathematical
model-assansadditionalssignal=N(s)sto; Y (s), and in the block diagram of
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Figure 3.3 Feedback control system with output measurement noise.

Fig. 3.3, which shows a feedback control system with output measurement
noise.

In many practical analog systems, especially nonelectrical systems, the
signal Y(s), such as velocity, angle, pressure, and temperature, is very
difficult to measure accurately. In addition, the implementation of feedback
control often requires that the measured analog signal be transformed to a
different analog signal such as an electrical signal. The device that performs
this operation is called a “‘transducer.” Such operations can also introduce
error. Because the presence of output measurement noise is almost
inevitable, a feedback system must have low sensitivity to such noise.

The purpose of measuring the feedback system output Y (s) is to help
generate a desirable control U(s), so the undesirable effect of system output
measurement noise is reflected mainly in its effect on U(s).

Applying Mason’s formula to the system in Fig. 3.3, when R(s) =0,

—H(s)

_ _ —H()
= WN(S) =——"N(s) (3.7)

ues) [~ L(s)
This is the effect of N(s) on U(s). Similar to Definition 3.2, lower magnitude
of the transfer function of (3.7) implies lower sensitivity against N(s).

It is clear from (3.7) that the sensitivity to N(s) is very much related to
the loop transfer function L(s). For example, from (3.7), in open-loop
systems which have no feedback [H(s)= L(s) =0] and in which the
measurement of Y (s) does not affect the system, the sensitivity to the output
measurement noise N(s) is zero.

Substituting (3.7) into Y(s) = G(s)U(s),

Y (s) = _lesi)LIzs(;)N(s) - %N@ (3.8)

This is the effect of N(s) on system output Y (s).
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In the analysis of feedback system sensitivity to plant system model
uncertainty and control input disturbance, it seems that the higher the loop
gain |L(s)|, the lower the sensitivity. However, Example 3.2 shows that a
high |L(s)| or a large |H(s)| does not lower the sensitivity to output
measurement noise at all. In fact, it is equally undesirable to indiscriminately
increase the loop gain |L(s)| because of the following three reasons.

1. A high loop gain is likely to cause feedback system instability,
from root locus results. This is especially true for plant systems
either with pole-zero excess exceeding two or with unstable zeros.

2. A high loop gain |L(s)| can generally reduce system performance.
From (3.3a) and the definition of bandwidth of Sec. 2.1, a higher
|L(s)| often implies a lower overall feedback system gain |7, (s)]
and therefore a narrower bandwidth.

3. A high loop gain or a high controller gain |H(s)| is more difficult
to implement in practice. A system with higher gain generally
consumes more control energy and is more likely to inflict
disturbance and cause failure.

Because of the above three reasons, the loop gain |L(jw)| is shaped only at
certain frequency bands. For MIMO systems, the loop gain is represented
by the largest singular value of the p x p dimensional matrix L(jw) [Doyle
and Stein, 1981; Zhou et al., 1995].

However, as described in Sec. 2.1, bandwidth is far less direct and far
less generally accurate in reflecting system performance. Subsections 2.2.2
and 3.2.1 (at the end) also indicated that robust stability is far less generally
accurately measured by the loop transfer function based gain margins and
phase margins. In addition, the loop-shaping operation, though it is already
very complicated, is less refined than state space design methods in terms of
how fully the available design freedom is utilized. For example, it seems that
only the gain (but not the phase angle) of loop transfer function is
considered by this operation.

To summarize, the critical factor of feedback system sensitivity is the
system loop transfer function itself, but not the high gain or only the gain, of
this loop transfer function.

3.2 SENSITIVITY OF FEEDBACK SYSTEMS OF MODERN
CONTROL THEORY

Section 3.1 described the critical importance of loop transfer function for
feedback system sensitivity. The same concept will be used to analyze the
sensitivitysof-three-existingsand-basie-feedback control structures of state
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space control theory. These three structures are state feedback, static output
feedback, and observer feedback. Of the three structures, observer feedback
system structure is much more commonly used than the other two.

Because loop transfer function is determined by the internal feedback
system structure, from now on we will let the external system reference
signal r(f) = 0. In addition, we will assume that the plant system G(s) is
irreducible.

3.2.1 State Feedback Control Systems

The state feedback control systems (or direct state feedback systems) have a
control signal u(z) of

u(?) = —Kx(1) (3.9)

where x(¢) is the system state vector, and K, which is called the “state
feedback gain™ or ‘“‘state feedback control law,” is constant. The block
diagram of this feedback control structure is shown in Fig. 3.4.

It is clear from Fig. 3.4 that the loop transfer function of this system is

L(s) = —K(sI — A)"'BA Ly (s) (3.10)

Substituting (3.9) into (1.1a), the dynamic equation of this feedback system
becomes

x(1) = (A — BK)x(t) + Br(r) (3.11)

Hence matrix A — BK is the dynamic matrix of the corresponding direct
state feedback system, and its eigenvalues are the poles of that feedback
system.

From Sec. 1.1, system state provides the most explicit and detailed
information about that system. Therefore state feedback control, if designed

Y[s]

X(s)

—(s1-A'B

O

Figure 3.4 Direct state feedback systems.
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properly, should be most effective in improving system performance and
robustness properties, even though this design is not aimed at shaping the
loop transfer function Lk, (s) directly.

Theorem 3.1

For any controllable plant system, the direct state feedback control can
assign arbitrary eigenvalues to matrix 4 — BK, and the direct state feedback
system remains controllable.

Proof

Any controllable system is similar to its corresponding block-controllable
canonical form, which is the dual version (4’, C') of its corresponding
block-observable canonical form of (4, C) of (1.16).

The form of (1.16) implies that there exists a matrix K’ such that all
unknown parameters of matrix 4 — K’C can be arbitrarily assigned, and
that A — K'C remains to be in observable canonical form for any K’. Hence
the eigenvalues of matrix 4 — K'C can be arbitrarily assigned and the
system (4 — K'C, C) remains to be observable for any K'.

From the duality phenomenon, the above conclusions imply that the
eigenvalues of matrix 4’ — C'K can be arbitrarily assigned, and that system
(A" — C'K, C') remains to be controllable for any K.

However, matrix 4 — BK in general cannot preserve the block-
observable canonical form of the original matrix 4. Hence direct state
feedback system cannot preserve the observability property of the original
open-loop plant system (A4, B, C).

In addition, eigenvectors can also be assigned if p > 1, thus achieving
robustness (see Sec. 2.2). The explicit design algorithms of state feedback
control for eigenvalue/vector assignment will be introduced in Chap. 8.

Besides the ability to assign arbitrary poles and the corresponding
eigenvectors to the feedback system, state feedback control can also realize a
so called “linear quadratic optimal control,” whose design will be
introduced in Chap. 9. It has been proved that the loop transfer function
Lk (s) of such control systems satisfies the “Kalman inequality” such that

[I — L (jo)*R[I — Lxo(jo)]=R Vo (3.12a)

wheresRyisssymmetricalypositivesdefinite (R = R’ > 0) [Kalman, 1960].
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Based on (3.12a), it has been proved that for R = rI(r > 0),
oill — Lgx(jo)l=1 Vo (3.12b)

where g; (i = 1,...,p) is the i-th singular value of the matrix. From (3.12b),
the values of gain margin and phase margin of the feedback system are
1/2 — oo and >60°, respectively [Lehtomati et al., 1981].

The SISO case of the above result can be shown in Fig. 3.5.

The shaded area of Fig. 3.5 indicates all possible values of — Lk, (jw)
that satisfy (3.12b). It is clear that the margin between these values and the
—1 point is at least 1/2 to oo in magnitude, and 60° in phase angle. Since
according to the Nyquist stability criterion, the number of encirclements of
the —1 point determines feedback system stability, this result implies a good
robust stability of quadratic optimal feedback systems.

Notice that at this good robust stability, no large gain (distance to the
origin) of Lk, (jw) is required at all.

However, as will be introduced at the beginning of Chap. 9, the linear
quadratic optimal control systems can be formulated to have poor
robustness (such as the minimum time problem). Yet the gain margin and
phase margin indicate good robustness for all such systems. This is another
proof that the gain margins and phase margins are not generally accurate
measures of system robustness (see Subsection 2.2.2).

The main drawback of direct state feedback control is that it cannot be
generally implemented. In most practical plant systems, only the terminal
inputs and outputs of the system are directly measurable; not the entire set
of internal system states. In other words, the available information about
most practical systems cannot be as complete and explicit as for system

/// )

-Li{io) plane

////

Figure 3.5 Loop transfer frequency response of single-input quadratic
optimal control systems.

L/
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states. Therefore, direct state feedback control should be considered only as
an ideal and theoretical form of control.

3.2.2 Static Output Feedback Control Systems

In static output feedback control systems, the control signal u(?) is
u(t) = —K,y(1) = —K,Cx(1) (3.13)

where y(7) = Cx(t) is a system output that is directly measurable and K, is
constant. The block diagram of this feedback system is shown in Fig. 3.6.

The loop transfer function and the dynamic matrix of this feedback
system are, respectively

L(s) = —K,C(sI — A)"'B (3.14)

and 4 — BK,C, which are very similar to that of the direct state feedback
system. The only difference is that the constant gain on x(#) is K, C instead
of K, where C is a given system matrix. Hence static output feedback
implements a constrained state feedback control with constraint

K=K,C (3.15)
In other words, K must be a linear combination of the rows of given matrix
C, or K" € R(C')A range space of C’ (see Subsection A.1.2). Because the

dimension of this space is m, which is usually smaller than n, this constraint
can be serious.

Example 3.3

In a second-order SISO system (n=2,p=m=1), if C is either
[1 0] or [0 1], then from (3.15) the state feedback control law K = [k k3]

u
o (si-A)'B

(s}, Y(s)

_Ky

Figure 3.6 Static output feedback systems.
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realized by the static output feedback must have either k, =0 or k; =0,
respectively. This situation generally implies a reduction of the effectiveness
of the control from dimension 2 to dimension 1.

If m = n and if C is nonsingular, then (3.15) is no longer a constraint,
and static output feedback becomes direct state feedback in the sense that
x(1) = C7'y(r) and K, = KC~'. Therefore, direct state feedback control can
be considered a special case of static output feedback control when C is
nonsingular, and static output feedback control may be called ““generalized
state feedback control,”” as is done in this book.

The advantage of static output feedback control is its generality
because y(¢) is directly measurable. Besides, its corresponding loop transfer
function is guaranteed to be —K(sI — A)le of (3.14) for whatever K =
K, C of (3.15). This property is not shared by many other feedback systems
(such as observer feedback systems). Finally, from the same argument of
Theorem 3.1 and its proof, static output feedback control preserves
controllability and observability properties of the original open-loop
system.

The main drawback of static output feedback control is that it is
usually too weak compared with direct state feedback control. This is
because m is usually much smaller than » in practice, which makes the
constraint (3.15) of static output feedback control too severe. For
example, only when m is large enough (as compared to n) such that
m+ p > n, can arbitrary eigenvalues be assigned to the feedback system
dynamic matrix 4 — BK,C [Kimura, 1975]. Example 3.3 is another such
example.

As a result, the design of static output feedback control is far from
satisfactory [Syrmos et al., 1994]. In this book, static output feedback
control design algorithms for either pole assignment (Algorithm 8.1) or
quadratic optimal control (Algorithm 9.2) are presented in Chaps 8 and 9,
respectively.

3.2.3 Observer Feedback Systems—Loop Transfer Recovery

An observer feedback system does not require the direct observation of all
system states, and implements a generalized state feedback control which is
much stronger than the normal static output feedback control. Therefore
observer feedback control structure overcomes the main drawbacks of both
direct state feedback control structure and static output feedback control
structure; it is the most commonly used control structure in state space
control theory.
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An observer is itself a linear time-invariant dynamic system, which has
the general state space model

Z(t) = Fz(t) + Ly(t) + TBu(z) (3.16a)
—Kx(t) = —K.z(t) — K,y(1) (3.16b)

where z(f) is the state vector of observer system, B comes from the plant
system state space model (A4, B, C), and other observer parameters
(F, T, L, K., K,) are free to be designed.

This observer definition is more general than the existing ones. It is
defined from the most basic and general observer function that it has y(7)
and u(z) as its inputs and Kx(¢) as its output. The many distinct advantages
of this general definition will be made obvious in the rest of this book.

Let us first analyze the conditions for an observer of (3.16) to generate
a desired state feedback control signal Kx(7).

Because both x(7) and y(¢) = Cx(#) are time-varying signals, and
because K and C are constants, it is obvious that to generate Kx(7) in
(3.16b), the observer state z(¢) must converge to Tx(¢) for a constant 7. This
is the foremost important requirement of observer design.

Theorem 3.2
The necessary and sufficient condition for observer state z(#) to converge to
Tx(t) for a constant T, or for observer output to converge to Kx() for a
constant K, and for any z(0) and any x(0), is

TA-FT=LC (3.17)
where all eigenvalues of matrix F must be stable.
Proof [Luenberger, 1971]
From (1.1a),

Tx(t) = TAx(t) + TBu(1) (3.18)

Subtracting (3.18) from (3.16a), we have

(1) — Tx(t) = Fz(1) + LCx(1) — TAx(1) (3.19)
= Fz(t) — FTx(¢t) + FTx(t) + LCx(t) — TAx(t)
= Flz(1) — Tx(1)] (3.20)
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if and only if (3.17) holds. Because the solution of (3.20) is
z(1) — Tx(1) = e"[2(0) — Tx(0)]

z(r) converges to Tx(f) for any z(0) and any x(0) if and only if all
eigenvalues of F are stable.

This proof also shows that it is necessary to let the observer gain to
u(#) be defined as 7B in (3.16a), in order for (3.19) to hold.

After z(t) = Tx(1) is satisfied, replacing this z(7) into the output part
of observer (3.16b) yields

K = KzT‘i‘KyC = [KZ : Ky] |:T:| f 6 (321)

C

>

Therefore (3.17) (with stable F) and (3.21) together form the necessary and
sufficient conditions for observer (3.16) to generate a desired state feedback
Kx(1).

The above introduction of (3.17) and (3.21) shows clearly that the two
conditions have naturally and completely separate physical meanings. More
explicitly, (3.17) determines the dynamic part of observer (F, T, L)
exclusively and guarantees the observer state z(¢) = Tx(t) exclusively, while
(3.21) presumes that z(¢) = Tx(t) is already satisfied and determines the
output part of observer (K or K = KC) exclusively. This basic design
concept has not been applied before (except for a very narrow application of
function observer design) and will be emphasized throughout the rest of this
book.

There are many design algorithms that can satisfy (3.17) and (3.21) for
arbitrary (stable) eigenvalues of F and arbitrary K (assuming observable
systems). However, this book will present only one such algorithm
(Algorithm 7.1), which has an additional feature of minimized observer
order. This is because (3.17) and (3.21) have not addressed the critical
robustness property of the observer feedback systems. This property will be
analyzed in the rest of this chapter.

As stated in the beginning of this subsection, observer feedback
systems have been the most commonly used control structure in state space
control theory. Because an observer can generate the state feedback control
signal Kx(t) = KCx(¢) [if (3.17) holds] and because the union of observer
poles and eigenvalues of 4 — BK = A — BKC forms the entire set of
observer feedback system poles [if (3.17) holds, see Theorem 4.1], it has been
presumedsthat-observer-feedbackssystems have the same ideal robustness
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properties as those of the direct state feedback system corresponding
K =KC.

However, in practice since the 1960s, bad robustness properties of
observer feedback systems have commonly been experienced, even though
the observer implements a state feedback control whose corresponding
direct state feedback system is supposed to have ideal robustness properties
(see Subsection 3.2.1). Because robustness with respect to model uncertainty
and control disturbance is critically important for most practical engineering
systems (see Sec. 3.1), state space control theory has not found many
successful practical applications since the 1960s.

At the same time, the application of the polynomial matrix and the
rational polynomial matrix has extended classical control theory into
MIMO systems [Rosenbrock, 1974; Wolovich, 1974; Kaileth, 1980; Chen,
1984; Vidyasagar, 1985]. Using the concept of loop transfer functions,
classical control theory clarifies better than modern control theory the
analysis of feedback system robustness properties (see Sec. 3.1). Further-
more, matrix singular values which can simply and accurately represent the
matrix norm (such as loop transfer function matrix norm or loop gain) have
become practically computable by computers (see Sec. A.3). As a result,
classical control theory, especially in terms of its robust design, has
witnessed significant development during the past two decades [Doyle et al.,
1992]. For example, the H,, problem, which may be briefly formulated as

min{mﬂgx {IF = LGw)]"|.}} (see Definition 2.4)

has received much attention [Zames, 1981; Francis, 1987; Doyle et al., 1989;
Kwakernaak, 1993; Zhou et al., 1995].

Until the end of 1970s, there was a consensus of understanding on the
cause of the problems of bad robustness observer feedback systems. This
understanding was based solely on the perspective of loop transfer functions
[Doyle, 1978]. We will describe this understanding in the following.

The feedback system of the general observer (3.16) can be depicted as
in Fig. 3.7, which shows that an observer can be considered a feedback
compensator H(s) with input y(#) and output u(z), where

U(s) = —H(s)Y(s)
= [ +Kz(sI —F)'TB 'K, + Kz(s] — F)"'L]Y(s)  (3.22)

It;should,benoticed fromyB=l6)thatithe transfer function from signal y(7) to
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Figure 3.7 Block diagram of general observer feedback systems.

—Kx(1) is

Hi(s) = —[K, + Kz(sI — F)'L] (3.23)
which is different from —H (s) of (3.22). The difference is caused solely by
the feedback of signal u(z) to the observer. If this feedback, which is defined

by its path gain TB and its loop gain K;(sI — F) ' TB, equals zero, then
—H(s) = Hg.(s).

Theorem 3.3

The loop transfer function at the break point —Kx(#) of Fig. 3.7, Lx.(s),
equals that of the corresponding direct state feedback system (3.10), or

Lic(s) = —K(sI — 4)"'B (3.24)

Proof [Tsui, 1988al

From Fig. 3.7,

Li(s) = Hi(5)G(s) = Kz(sI = F)"'TB (3.25a)
by (3.23)

— _K,G(s)— Kz(sL— F)_"[LG(s) + TB] (3.25b)
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by (1.9)

= —[K,C + Kz(sl — F)"'(LC+sT —TA)|(sI — A)"'B
by (3.17)

= —[K,C+ Kz(sl — F)"'(sI — F)T)(sI — 4)"'B
by (3.21)

= —K(sI—A)"'B

Figure 3.7 also shows that —Kx(7) is only an internal signal of
compensator H(s), while u(z) is the real analog control signal that is
attributed to the plant system G(s) and which is where the disturbance is
introduced (see Subsection 3.1.2). Therefore, the loop transfer function L(s),
which really determines the sensitivity properties of the observer feedback
system, should be the one at break point u(z) [Doyle, 1978]. From Fig. 3.7,

by (3.22)
= —[I + K (sI — F)"'TB|"'[K, + K (s] — F)"'L]G(s) (3.26)

Because L(s) # Lx.(s) = —K(sI — A)"' B and because loop transfer func-
tion plays a critical role in the feedback system sensitivity, the observer
feedback system has different robustness properties from that of the
corresponding direct state feedback system [Doyle, 1978].

Example 3.4

In order to further understand the difference between the two loop transfer
functions of (3.25) and (3.26), we will analyze two more system diagrams of
observer feedback systems. The first diagram (Fig. 3.8) is called a ‘“‘signal
flow diagram.”

For simplicity of presentation, we may assume the path branch with
gain K, = 0 and ignore this path branch. Then Fig. 3.8 shows that at node
u(?) there is only one loop path. The loop with gain —K(sI — F)flTB is
attached:tosthisssingledoop:pathalncontrast, at node —Kx(z), there are two

Copyright 2004 by Marcel DekKer, Inc. All Rights Reserved.



Figure 3.8 Signal flow diagram of observer feedback systems.

loop paths. The loop with gain —K (sl — F)flTB is an independent loop
path between the two.

The second block diagram (Fig. 3.9) is also common in literature. In
this equivalent block diagram of observer feedback systems,

H,(s) = —[K, + Kz(sI — F)"'L] = Hg(s) of (3.23)
and
H,(s) = —K(sI — F)"'TB (3.27)

We should reach the same conclusion from Figs 3.8 and 3.9 on the loop
transfer functions at nodes u(¢) and —Kx(¢). They are

L(s) = [I — Hy(s)) " H,(5)G(s)
= —[I 4+ Kz(sI — F) 'TB "' [K, + Kz(sI — F)"'L|G(s)  (3.26)

U(s) Y(s)

KX(s] ( Hyl(s)

Figure 3:9.-Ansequivalent;block-diagram of observer feedback systems.
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and

L (s) = Hy(s)G(s) + Hy(s) (3.25a)
= —K,G(s) — Kz (sl — F)"'[LG(s) + TB] (3.25b)
respectively.
Theorem 3.4

The necessary and sufficient condition for observer feedback system loop
transfer function L(s) to be the same as that of the corresponding direct
state feedback system Lg.(s) is

H,(s) = —Kz(sI —F)'TB=0 Vs (3.28a)
For freely designed state feedback gain K [or K of (3.21)], (3.28a) becomes

H,(s) = —Kz(sI —F)'TB=0 Vsand K, (3.28b)
The necessary and sufficient condition for (3.28b) is

TB=0 (3.29)

Proof

Figure 3.7, Example 3.4, and the comparison between (3.25) and (3.26) all
indicate clearly that the difference between Lk, (s) and L(s) is caused solely
by the feedback loop [with gain H,(s)]. Therefore, the necessary and
sufficient condition for L(s) = Lk.(s) is H,(s) = 0 [or (3.28a)].

Because (s — F )71 should be nonsingular Vs and K7 should be freely
designed, 7B = 0 is obviously the necessary and sufficient condition for
(3.28Db).

Comparing Figs 3.1 and 3.9, this theorem indicates that only the
system structure of Fig. 3.1, which does not have the feedback from input
u(?) and which is therefore called the “output feedback compensator” (see
Sec. 4.4), can guarantee the same loop transfer function of the direct state
feedback system.

In papers [Doyle and Stein, 1979, 1981] subsequent to Doyle [1978],
thesauthorssimposedsthesproblempofymaking L(s) = L, (s), which is called
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“loop transfer recovery” (LTR). This problem is clearly an additional
requirement of observer design—the observer is required not only to realize
a desired state feedback control signal, but also to have L(s) = Lg(s).
Mathematically speaking, from Theorems 3.2-3.4, the observer is required
to satisfy not only (3.17) and (3.21), but also (3.29) (if the state feedback
control is freely designed).

The LTR requirement can eliminate the basic cause of sensitivity
problems of observer feedback systems and is therefore of great practical
importance to the entire state space control theory.

Unfortunately, for almost all given plant systems, it is impossible to
have an observer that can generate the arbitrarily given state feedback
signal Kx(f) while satisfying (3.28a) or (3.29) (see Sec. 4.3). For this
reason, this book proposes a new and systematic design approach which is
general for all plant systems. This new approach can design an observer
that generates a constrained state feedback signal Kx(t) = KCx(t) (K is
completely freely designed) that satisfies (3.29) exactly for most plant
systems (see Sec. 4.4) and that satisfies (3.29) in a least-square sense for all
other plant systems.

Although a state observer that can generate the arbitrarily given
Kx(1) cannot satisfy (3.28a) or (3.29) for almost all plant systems, such an
observer is required by all other LTR design methods. At the other
extreme, the study of every possible Kx(t) that can be generated by an
observer [satisfying (3.28a), (3.17), and (3.21)] and that can stabilize the
matrix 4 — BK has been reported [Saberi, 1991]. Obviously, the K (or Kz)
that is constrained on (3.28a), (3.17), (3.21), and stable 4 — BK is only a
theoretical formulation (or reformulation). The K under this formulation
(K7 is not free) cannot be systematically designed, in contrast to the K that
is constrained only on K = KC (K or K, are free) of our design (see
Subsection 3.2.2, the paragraph at the end of Sec. 4.2, and the
corresponding technical argument in Sec. 4.4).

SUMMARY

Loop transfer function is a critical factor which determines the feedback
system sensitivity, and requirement (3.29) is necessary and sufficient to
preserve observer feedback system loop transfer function from that of its
corresponding direct state feedback system, for either arbitrarily given or
freely [but with constraint (3.21)] designed state feedback.

State feedback control, either unconstrained or constrained by (3.21),
is the general and the basic form of control of state space control theory,
and-issby-fanthe-bestzamong-all-existing basic forms of control.
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The observer (3.16) is the main feedback compensator structure of
state space control theory, but it is required to satisfy (3.17) and
nonsingular C [or (3.21) for all K] in most of the literature. Observers with
additional requirement (3.28a) or (3.29) in the existing literature are very
severely limited. This book introduces a fundamentally new observer
design approach which can satisfy (3.17), (3.21), and (3.29) much more
generally.
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4

A New Feedback Control Design Approach

Chapter 3 analyzed the observer design requirements, which can be outlined
as follows.
To guarantee observer state z(¢) = Tx(¢), we require

TA— FT = LC (F is stable) (4.1)

To guarantee the generation of signal Kx(z), we require [assuming
z(1) = Tx(1)]




Finally, to realize the same robustness properties of the state feedback
control which can be designed systematically, we require (Theorem 3.3 and
3.4)

TB=0 (4.3)

The real challenge is iow to generally and systematically satisfy these
three requirements. A fundamentally new design approach of satisfying
these three requirements is proposed in this chapter, which is divided into
four sections.

Section 4.1 points out a basic and general observer design concept that
(4.1) should be satisfied separately and before satisfying (4.2) for arbitrary K
(or nonsingular C). In most existing observer design and in all existing LTR
observer design, only state observers are designed which imply the
simultaneous satisfaction of (4.1) and nonsingular C. This basic concept
implies the generation of Kx(r) directly from z(¢) [= Tx(¢)] and y(¢) [=
Cx(?)] instead of from the explicit x(f) = C [z(¢)" : y(¢)']'. This concept is
used throughout the rest of this book.

Section 4.2 analyzes the poles (or performance) of the observer
feedback system. It proves a revised version of the ‘“‘separation property”
that (4.1) alone (not nonsingular C) is the sufficient condition for observer
feedback system poles being composed of the eigenvalues of F and
A — BKC.

Section 4.3 reviews the current state of existing results of LTR. It
points out that while state observers can be designed generally, the LTR
state observers are very severely limited.

Section 4.4 summarizes the conclusions of the first three sections and
proposes a fundamentally new design approach which satisfies (4.1) and
(4.3) first (not nonsingular C), and which satisfies (4.1)~(4.3) much more
generally, simply, and systematically. The only tradeoff of this new design
approach is that its state feedback Kx(¢) can be constrained on (4.2) because
C may not always be nonsingular. This tradeoff is obviously necessary and
worthwhile in light of the severe drawbacks of the results of Sec. 4.3.

4.1 BASIC DESIGN CONCEPT OF OBSERVERS—DIRECT
GENERATION OF STATE FEEDBACK CONTROL SIGNAL
WITHOUT EXPLICIT SYSTEM STATES

We will use the design examples of three basic observers to explain that
satisfying (4.1) first and then (4.2) keeps with the basic physical meanings of
thesestwosrequirements=-Becauses(4=l)-alone implies that z(f) = Tx(¢), this

Copyright 2004 by Marcel DekKer, Inc. All Rights Reserved.



separation also implies the direct generation of Kx(7) in (4.2) from z(7) [=
Tx(t)] and y(¢) [= Cx(1)].

Example 4.1 Full-Order Identity State Observers

Let T=1 and F = A — LC in the observer part (3.16a). Then (4.1) is
obviously satisfied and (3.16a) becomes

z(1) = (A — LC)z(¢) + Ly(¢) + Bu(z) (4.4)
= Az(t) + Bu(t) + L[y(t) — Cz(t)] (4.5)

Subtracting (1.1a) from (4.4),
(1) — X(1) = (4 — LO)[z(1) — x(1)] = Flz(1) — x(1)]

Therefore, z(f) = x(t) if F is stable. Thus we have repeated the proof of
Theorem 3.2.

In the above argument, (4.2) is not involved and (4.1) alone completely
determines the observer (4.4)—(4.5), which generates x(¢). Only after z(t) =
Tx(1) is generated do we multiply z(7) by K [or let [K7 : K,] A K = [K : 0] in
(3.16b) and (4.2)] in order to generate the desired state feedback Kx(7).

Because parameter 7 has n rows, this observer has n states, and it is
therefore called “full order.” In addition, if 7'is not an identity matrix but is
nonsingular, then x(¢) does not equal z(¢) but equals T~'z(¢). We define any
observer of (3.16) that estimates x(7) as a “‘state observer.” We therefore call
the observer with 7" = I an ““identity observer” and consider it a special case
of full-order state observers.

It is obvious that 7B cannot be 0 for a nonsingular 7. Therefore, a
full-order state observer cannot satisfy LTR (4.3).

The observer structure of (4.5) is also the structure of Kalman filters
[Anderson, 1979; Balakrishnan, 1984], where L is the filter gain. The
Kalman filter can therefore be considered a special case of full-order identity
state observer.

The full-order identity state observer feedback system has the block
diagram shown in Fig. 4.1.

Example 4.2 Reduced-Order State Observers
Contrary to full-order state observers, the order of a reduced-order state

observer equals n—m and y(¢) is used in (3.16b) (K, # 0). Thus the
parameter:7-of thissobsenvershassonly:n — m rows and cannot be square.
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Figure 4.1 Full-order identity state observer feedback system.

As in the design of Example 4.1, (4.1), and z(¢) = Tx(¢) must be
satisfied first (see Theorem 3.2). Only then, to generate x(z) = Ix(¢) in
(3.16b) or to satisfy

Ix(t) = [Kz : K )fa(0) s y(0)) = K[T': Cx(0) (4.6)

matrix CA[T" : C']' must be nonsingular and K = C . Therefore, in this
design, the requirement (4.2) (I = KC) again comes after (4.1) and is
separated from (4.1).

The reason that this observer can have order lower than n comes from
the utilization of the information of y(z) = Cx(¢) in (3.16b), (4.2), and (4.6).
Mathematically speaking, with the addition of m rows of matrix C in matrix
C, the number of rows of T can be reduced from » to n — m in order to make

matrix C square and nonsingular. The reduced-order state observer
feedback system can be depicted as shown in Fig. 4.2.

t
- CERET =

[TB

Figure 4:2..Reduced-order state;observer feedback system.
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In the formulation (3.16) of observers, the signal Kx() is estimated,
with K being a general matrix. Therefore the state observer that estimates
x(#) = Ix(t) is a special case of the observers of (3.16) in the sense that the
general matrix K of the latter becomes a special identity matrix 7/ of the
former.

Examples 4.1 and 4.2 also show that because matrix I has rank n,
matrix C (which equals 7 in full-order state observers and [T": C']" in
reduced-order state observers) must be a nonsingular square matrix.
Therefore the number of rows of matrix 7 or the order of these two types
of state observers must be n and n — m, respectively.

However, after z(r) = T'x(z) is satisfied by (4.1), the desired state
feedback Kx(7) can be generated directly from z(z) = Tx(¢) and y(t) =
Cx(t) without explicit information on x(#). From a linear algebraic point of
view, Eq. (4.2) (K = KC) can be solved without the computation of c
More important, for p < n, which is generally true, a very wide range of
desirable K can be satisfied by (4.2) without a nonsingular C, as long as
K’ER(G/), even though a nonsingular C [or the estimation of x(¢)] is still
required VK. This basic understanding offers the following two possible
significant improvements of observer design.

The first is observer order reduction, because the observer order equals
the number of rows of 7'in matrix C. We will call the observer that estimates
the desired state feedback Kx(7) and with minimal order the “minimal order
observer.” The design results of this observer will be reviewed in Example
4.3, and the first systematic and general design algorithm of this observer
[Tsui, 1985] is presented in Chap. 7.

The second, and even more significant, improvement is that not
requiring C to be nonsingular implies that the entire remaining observer
design freedom after (4.1) can be fully used to satisfy (4.3), or to realize the
robustness properties of the state feedback control that the observer is trying
to realize. This is the key concept behind the new design approach, which is
formally proposed in Sec. 4.4 [Tsui, 1987b]. The exact and analytical solution
of (4.1) and (4.3) [Tsui, 1992, 1993b] will be described in Chaps 5 and 6.

It should be emphasized that the single purpose of an observer in
almost all control system applications is to realize a state feedback control
Kx(f) but not to estimate explicit plant system state x(¢). When x(¢) is
estimated by a state observer, it is multiplied immediately by K (see Figs 4.1
and 4.2).

Definition 4.1

The observer (3.16) that generates the desired Kx(¢) directly [without
generatingzexplicitly-x(#)]misscalledsthe “‘function observer.” Obviously,
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only function observers can have minimal orders that are lower than
n—m.

Example 4.3 Overview of Minimal Order Function
Observer Design

Order reduction has been an important problem in control systems theory
[Kung, 1981] and high observer order has been a major cause of
impracticality of state space control theory.

Based on the analysis of this section, the only difference between the
minimal order observer and the other observers is at Eq. (4.2):

K =[Ky: K},]{g} _XC

in which the least possible number of rows of matrix 7 is sought in design
computation. To do this computation generally and systematically, every
row of matrix 7 in (4.2) must be completely decoupled from each other
and must correspond to only one cigenvalue of matrix F (or only one
observer pole). In addition, the complete freedom of 7 must also be fully
used in this design computation. Because 7 must satisfy (4.1) first, the
freedom of T to be used in (4.2) can be considered the remaining freedom
of (4.1).

Although there have been many attempts at minimal order observer
design [Gopinath, 1971; Fortmann and Williamson, 1972; Gupta et al.,
1981; Van Loan, 1984; Fowell et al., 1986], which have been clearly
documented in O’Reilly [1983], the above solution matrix 7 of (4.1) has not
been derived [Tsui, 1993a]. As a result, it has been necessary to solve (4.1)
and (4.2) together and it has not been possible to solve (4.2) separately and
therefore systematically [Tsui, 1993a]. As a result, the general and systematic
minimal order observer design problem has been considered a difficult and
unsolved problem [Kaileth, 1980, p. 527; Chen, 1984, p. 371].

The above solution matrix 7 has been derived by Tsui [1985]. Thus the
minimal order observer design has been really and uniquely simplified to the
solving of only (4.2), which is only a set of linear equations. A general and
systematic algorithm of minimal order observer design [or the solving of
(4.2) for minimal number of rows of 7] is proposed in Tsui [1985] and is
introduced as Algorithm 7.1 in Chap. 7 of this book.

Minimal order function observer is the only existing observer that
generates the desired Kx(#) signal directly, without the explicit x(#) [or,
satisfyings(4=b)swithoutsasnonsingular; C], and it is the only application of
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this basic design concept. This example shows that this observer can be
generally and systematically designed, based only on a desirable solution of
(4.1) [Tsui, 1985].

The above three examples of existing basic observer design demon-
strate that satisfying (4.1) first without a nonsingular C in (4.2) [or
generating Kx(7) directly, without generating x(1) = C ' [z(¢)' : y(1)]] fits
the original physical meanings of these two conditions and is in keeping with
the existing basic observer design procedures.

This design concept enables the elimination of the difficult and
unnecessary requirement of complete state estimation or the requirement
that C be nonsingular, and thus enables the possibility of significant
improvements on observer design (one of which is observer order
reduction).

Example 4.3 also demonstrates that this basic concept has been
obscured by the fact that almost all observer results involve state observers
only, and by the previous unsuccessful attempts at the general and
systematic design of minimal order function observers.

4.2 PERFORMANCE OF OBSERVER FEEDBACK SYSTEMS—
SEPARATION PROPERTY

In the previous section, we discussed the design concept of satisfying (4.1)
separately without satisfying a nonsingular matrix CA[T" : C']".

In this section, we will prove that (4.1) alone (not with a nonsingular C)
guarantees that the observer feedback system poles be the eigenvalues of F
and 4 — BKC. Thus (4.1) alone also guarantees explicitly and to a certain
degree the observer feedback system’s performance (see Sec. 2.1). This is an
essential validation of the new design approach of this book, which seeks the
satisfaction of (4.1) and (4.3) first, without a nonsingular matrix C.

Theorem 4.1 (Separation property)
If (4.1) is satisfied, then the poles of the feedback system that is formed by

the plant system (1.1) and the general observer (3.16) are composed of the
eigenvalues of matrices F of (3.16) and 4 — BK of (1.1) and (4.2).

Proof [Tsui, 1993b]

Substituting (3.16b) into the plant system input u(¢) and then substituting
thissu(#)randy(#)=-Cx(#)rintosthe.dynamic part of plant system (1.1a) and
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observer (3.16a), the dynamic equation of the observer feedback system is

o) = [iamtme o e eali] @

Multiplying
|10
Q _{T 1
and
I 0
o= |7 1]

on the left and right side of 4., respectively, we have

~ A4 . |A4—-BK,C—-BK;T —BK,
A.=0 ACQ—[ —~TA+FT + LC F

if (4.1)

_ [4—BKC —BK,
_ [ . g ] (4.8)
The eigenvalues of A — BKC and of F will constitute all eigenvalues of A, of
(4.8), which has the same eigenvalues of A..

In the normal and existing state space design practice, either the
eigenvalues of F and 4 — BKC are assigned without considering the overall
feedback system poles, or the overall system is designed without considering
the poles of its feedback compensator. The separation property guarantees
the overall observer feedback system poles once the eigenvalues of F and
A — BKC are assigned. Therefore from Sec. 2.1, it guarantees explicitly the
overall observer feedback system performance to the degree of those
assigned poles. It also guarantees the poles and the stability of observer
(3.16) from the stability of the overall observer feedback system, in case the
design is carried out from the perspective of the overall feedback systems.

The separation property is thus extremely important and has appeared
in almost all state space control literature, such as O’Reilly [1983].

However, the general observer (3.16) formulation (with generalized
dynamicspartrands-generalizedsstatesfecdback output) has not really been
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extended to the existing literature. More important, the property that (4.1)
alone (not a nonsingular C) is the sufficient condition of Theorem 4.1 has
not really been clarified in the existing literature either [Tsui, 1993Db].

Because in the original version of Theorem 4.1 the parameter KC is
replaced by an arbitrary K, it has been customary to assign the eigenvalues
of Fin (4.1) and the eigenvalues of 4 — BK (3.11) completely separately.
Hence the name “‘separation property.”

However, as will be described in the next section, for most plant
systems, an arbitrarily designed state feedback Kx(7) cannot be implemen-
ted by an observer with a nonsingular C and with exact LTR [or (4.3)]. The
new design approach of this book fundamentally changes this traditional
design practice by designing the state feedback gain K based on
K = K[T': C']", where observer parameter T satisfies (4.1) and (4.3). This
new design approach is validated partly by the above revised separation
property, which shows that (4.1) alone is the sufficient condition of this
property, while the addition of constraint K = K[T" : C']' generalizes this
property from K to K = K[T": C']'.

Finally, for the sake of theoretical integrity, we shall point out that the
condition (4.1) is not a necessary condition of Theorem 4.1 for every
possible combination of (C, K, F, T, L). This point can be simply proved
by the following special example.

Example 4.4
Let a matrix 4. and its characteristic polynomial be

sI — (4 — BKC) BK.

|sI — A.| =
TA—FT —LC sI—-F
s—a —b 1
=| =b s—a -1
¢ c s—f

where parameters (a, b, ¢, f) are scalars. Then

_ _ —a —b
sI—A(,|:(s—f)|s1—(A—BKC)|+‘S “ ‘+
C

= (s — f)]sI — (4 — BKC)| (4.9)
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The equality of (4.9) (or separation property) holds even if parameter ¢ # 0,
or even if (4.1) is not satisfied.

In any practical design, the parameters of (C, K, F, T, L) have to be
designed to satisfy (4.1), (4.3), and a satisfactory 4 — BKC, but not to fit the
special case of Example 4.4. Thus this argument on the necessity of (4.1) to
Theorem 4.1 is totally meaningless in practice.

This situation is very similar to the argument of Saberi et al. [1991]
that (4.3) is not necessary for exact LTR and for every possible combination
of parameters (K, F, T). This is because the parameters of (K, F, T') have
to be designed to satisfy (4.1) and a satisfactory 4 — BKC, but not to fit
those special cases that satisfy (3.28a) but not (4.3).

4.3 THE CURRENT STATE OF LTR OBSERVER DESIGN

As discussed in Sec. 4.1, besides observer order reduction, a much more
important observer design improvement is the significantly more general
and systematic robustness preservation (or LTR) of observer feedback
systems.

From Theorems 3.3 and 3.4, the requirement of LTR [or (4.3)] can
eliminate the basic cause of sensitivity problems of observer feedback
systems and is therefore of great practical importance. As a result, this
problem has received much attention since its proposition [Sogaard-
Andersen, 1986; Stein and Athans, 1987; Dorato, 1987; Tsui, 1987b; Moore
and Tay, 1989; Saberi and Sannuti, 1990; Liu and Anderson, 1990; Niemann
et al., 1991; Saeki, 1992; Tsui, 1992, 1993b; Saberi et al., 1993; Tsui, 1996a,
b; Tsui, 1998b].

However, the mere proposition and formulation of a problem does not
imply that the problem is solved, and experience shows that the latter can be
much more difficult than the former. Even the derivation of some initial
solutions of a problem does not imply the problem is solved satisfactorily,
and experience also shows that the latter can be much more difficult than the
former. Furthermore, only the theoretical problem with a really satisfactory
solution can have real practical value.

This section shows that all other existing LTR observers are state
observers. While a state observer without the LTR requirement (4.3) can be
generally designed, the state observer with (4.3), which is called the ‘“‘exact
LTR state observer,” is very severely limited.

It has been proved that to have an exact LTR state observer or to
satisfy (4.1) and (4.3) with arbitrarily given K [or to satisfy (4.1) and (4.3)
with a nonsingular C], the plant system must satisfy either one of the
following-twosrestrictionss[Kudvasetsal., 1980]. These two restrictions are
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originally derived for the existence of the “‘unknown input observers.” An
unknown input observer is a state observer with zero gain to the plant
system’s unknown input [Wang et al., 1975]. Hence it is equivalent to an
exact LTR state observer, if we consider the plant system gain to the
unknown input signal as matrix B.

The first restriction is that the plant system must have n — m stable
transmission zeros. This is extremely restrictive because most systems with
m # p do not have that many transmission zeros in the first place (see
Example 1.8 and Davison and Wang, 1974).

The second is a set of three restrictions: (1) minimum-phase (all
transmission zeros are stable), (2) rank (CB) = p, and (3) m > p. This again is
extremely restrictive because it is very hard to require all existing
transmission zeros be stable (see Exercises 4.2 and 4.6), and rank (CB) =
p is also not satisfied by many practical systems such as airborne systems.

The above two restrictions can be related by the following property of
transmission zeros [Davison and Wang, 1974]; namely, that almost all
systems with m = p have n — m transmission zeros, and that all systems with
m = p and with rank (CB) = p have n — m transmission zeros. Therefore the
second restriction is a little more general than the first restriction because it
admits some additional plant systems with m > p.

For plant systems not satisfying the above two restrictions, if they are
minimum-phase, then there is an asymptotic LTR state observer for these
systems, while there exist no other unknown input observer results for these
systems because the above two restrictions are necessary conditions of
unknown input observers.

Asymptotic LTR state observers have been widely documented [Doyle
and Stein, 1979; Stein and Athans, 1987; Dorato, 1987; Moore and Tay, 1989;
Saberi and Sannuti, 1990; Niemann et al., 1991; Saberi et al., 1993] and have
been considered the main result of LTR because minimum-phase restriction
is less strict than the above two restrictions for exact LTR state observers.

There are mainly two design approaches for asymptotic LTR state
observers.

The first is valid for minimal-phase systems only, and is to
asymptotically increase the plant system input noise level when designing
the Kalman filter [Doyle and Stein, 1979] or to asymptotically increase the
time scale of state observer poles [Saberi and Sannuti, 1990]. Unfortunately,
this approach inevitably and asymptotically increases the observer gain L.
As discussed in Sec. 3.1 and Shaked and Soroka, (1985); Tahk and Speyer,
(1987); and Fu, (1990), the large gain L is even more harmful to system
sensitivity properties than not having LTR at all.

The second approach is to compute a loop transfer function L(s)
whesedifferencestosthetargetloopstransfer function Lk, (s) has an H,, norm
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bound over frequency [Moore and Tay, 1989]. Unfortunately, this bound is
itself generally unpredictable. For example, in the actual design it is ever
increased until a numerical solution of a bounded value Riccati equation
exists—it does not converge to a lower level at all [Weng and Shi, 1998].
Even more critically, at the frequency w of this bound, no consideration is
made and no bound exists for the phase angle of L(jw) — Lk, (jw).

To summarize, the existing exact LTR state observer is too restrictive,
while the existing asymptotic LTR state observers are far from satisfactory.

The main reason for these unsatisfactory LTR results is the
requirement of state estimation or the requirement of implementing
arbitrarily given state feedback control. Mathematically speaking, C
nonsingular is a difficult yet unnecessary additional requirement [in addition
to necessary conditions (4.1) and (4.3)] to satisfy.

For example, most of the existing LTR results involve Kalman filters.
The Kalman filter design freedom is used almost completely for minimum
variance state estimation [Anderson and Moore, 1979; Balakrishnan, 1984]
and not for LTR. The only remaining design freedom of Kalman filters for
LTR is a scalar plant system input noise level ¢ [Doyle and Stein, 1979]. As ¢
is increased asymptotically for achieving LTR, the Kalman filter poles must
approach each of the plant system transmission zeros and negative infinity
at Butterworth pattern [Anderson and Moore, 1979]. This is the reason that
the Kalman filter-based exact LTR observer requires n — m stable plant
system transmission zeros [Stein and Athans, 1987; Friedland, 1989], and is
the reason that the asymptotic LTR state observer requires that the plant
system be minimum-phase [Doyle and Stein, 1979, 1981].

Example 4.5 The Unsatisfactory State of the Existing
Asymptotic LTR Result

Let the given plant system be

e ([2 2o )

s+ 2
(s+ 1D)(s+3)

and
G(s) =

whichghasyits—sitz=12s—slpstablestransmission zero —2.
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Let us design an observer which can implement a quadratic optimal
state feedback

K = [30 — 50]
whose corresponding loop transfer function (3.10) is

 _K(s] — A)- _ —(10s 4 50)
Lials) = =K(sT = 4) lB_(s+1)(s+3)

This example was raised by Doyle and Stein [1979], which provided two
types of observer results:

1. A full-order identity state observer with poles —7 4+ j2:

0 -53 50
(F=A—LC,T,L Kz,K,) = ([1 _14},1, LO},K,O)

whose corresponding loop transfer function is computed as
L(s) = —[1 + K(sI — F)"'B] "' [0+ K(sI — F)"'L]G(s)

_—100(105426) 542
24245 —-797 7 (s+1)(s+3)

and is very different from Lg.(s).
2. A Kalman filter with asymptotic LTR (¢ = 100):

(F=A4-LC,T,L,K;,K))
0 —206.7 203.7
= ) 17 ) K7 0
1 —-1024 98.4
whose corresponding loop transfer function is similarly computed as

o) = Z(I9Ls5403) 52
VS 12454497 7 (s+ 1)(s+3)

This is already the best LTR result of Doyle and Stein [1979]. It is achieved
by a high-input noise level ¢ = 100 and the associated large filter gain
(lell=1226:2)spWhichgissextremelygundesirable. The poles of this filter are
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around —2 and —100. Nonetheless, L(jw) is still very different from Lk, (jw)
at w < 10 (see Fig. 3 of Doyle and Stein, 1979).
The simple and exact LTR result is derived as [Tsui, 1988b]

(F,T,L, Kz, K,) = (=2,[1 — 2], 1,30, 10)

It can be verified that the corresponding L(s) = Lk.(s), which is guaranteed
by TB = 0 (see Theorem 3.4). The observer gain L = 1 while the output gain
of this observer [K7 : K,] is less than K. It should be noted that there is no
explicit state estimation in this design.

The original example of Doyle and Stein [1979] used the dual
controllable canonical form (4’, C’, B’) to represent the same plant system.
The corresponding state feedback K is [50 10], and the corresponding
gains L for the above two observers of Doyle and Stein [1979] were
[30 —50] and [6.9 84.6], respectively. Nonetheless, all compatible
transfer functions and loop transfer functions of Example 4.5 and Doyle
and Stein [1979] remain the same.

This example shows that the asymptotic LTR result is far from
satisfactory. It also shows the effectiveness of the design concept of not
explicitly estimating plant system states.

The plant system of Example 4.5 has n — m stable transmission zeros
and therefore satisfies the first of the above two sets of restrictions for exact
LTR. The real advantage of the new design approach (of not requiring state
estimation) of this book is for systems not satisfying these two sets of
restrictions. Several such examples will be illustrated in Sec. 6.2, after the
explicit algorithms of (4.1) and (4.3) are described.

A reason that only state observers [satisfying (4.1) and nonsingular C
together] are involved in the existing LTR results concerns the difficulty in
deriving a really satisfactory solution of (4.1), as was true in the minimal
order observer design (see Example 4.3).

To summarize, the solving of (4.1) and (4.3) [but not nonsingular C]
is not a retreat into a simpler design approach nor an avoidance of
arbitrary state feedback implementation, but a necessary and difficult
step to eliminate the very unsatisfactory state of the existing LTR results,
and a novel step which is enabled only by a technical breakthrough in
the solution of (4.1) [the remaining freedom of (4.1) is fully used to
satisfy (4.3)].
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4.4 A NEW DESIGN APPROACH AND NEW FEEDBACK
STRUCTURE—A DYNAMIC OUTPUT FEEDBACK
COMPENSATOR THAT GENERATES STATE/
GENERALIZED STATE FEEDBACK CONTROL
SIGNAL

The conclusions of the first three sections of this chapter can be listed as
follows.

Conclusion 4.1

Equation (4.1) is a necessary and sufficient condition for an observer (3.16)
to generate a signal Kx(¢) for a constant K, where x(7) is the plant system
state vector (Theorem 3.2).

Conclusion 4.2

Equation (4.1) is also the sufficient condition for the observer feedback
system poles to be composed of the eigenvalues of F and of 4 — BK, where
Kx(1) is the state feedback generated by the observer (3.16) (Theorem 4.1).
This theorem guarantees the observer feedback system performance.

Conclusion 4.3

For a freely designed state feedback Kx(1) (K =KC,C=[T":C"7 is
determined and K is completely free), the necessary and sufficient condition
for the observer feedback system to realize the robustness properties of this
Kx(t) is (4.3) (or TB =0, Theorem 3.4).

Conclusion 4.4

To satisfy (4.1), (4.3), and a nonsingular C, or to have an exact LTR state
observer, the plant system either must have n — m stable transmission zeros
or satisfy (1) minimum-phase, (2) rank (CB) = p, and (3) m=p [Kudva et
al., 1980]. Most practical plant systems do not satisfy these restrictions. The
other existing asymptotic LTR state observer is far from satisfactory either,
mainly because of its asymptotic large gain.

Because of this conclusion, even though the ideally and separately
designed state feedback can always be implemented by a state observer, its
ideal robustness property is lost in the actual observer feedback system in
most:casess Thississintolerablesbecausesrobustness is a key property of most
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engineering systems. Conversely, even though a state observer has generated
the desired state feedback control signal (even optimally in a minimal
variance sense), the purpose of this state observer is also lost because it has
failed to realize the critical robustness properties of the same state feedback
control in a deterministic sense.

The reason for this state of existing results of Conclusion 4.4 can be
interpreted as follows. Because the state feedback control K is designed
separately from the state observers, the state observers are expected to
implement arbitrarily given state feedback. This is proven to be too much of
a requirement if the LTR requirement (4.3) is added.

Let us analyze the above situation from another different perspective.
The direct (and ideal) state feedback is designed based on the dynamic
matrix A — BK or the information of the plant system’s input dynamic part
(A4, B) only, and is separated completely from the knowledge of plant
system’s output observation (with key parameter C) and the knowledge of
the observer (with key parameter 7) which actually realizes and implements
it. Therefore such design cannot be considered mature and is not based on
complete information. This immaturity is reflected by the fact that the
resulting state feedback control and its robustness property cannot be
actually realized in most cases if the states are not all directly measurable,
even though such a state feedback control is itself ideal and superb (see
Subsection 3.2.1).

Based on the above conclusions and analysis, this book proposes a
fundamentally new design approach. In this new approach, the state
feedback control is designed based on the feedback system dynamic
matrix 4 — BKCAA — BK[T' : C'', which comprises the information of
not only the plant system’s input dynamic part (4, B), but also other
plant system parameter C and observer parameter 7. The new state
feedback control is guaranteed of observer implementation, separation
property, and robustness realization for significantly more general cases.
Thus this new approach is mature and is divided naturally into the
following two major steps.

The first step determines the observer dynamic part (3.16a) by solving
(4.1) and using the remaining freedom of (4.1) to best satisfy (4.3). Thus the
resulting observer is able to generate a state feedback signal Kx(z) with a
constant K = KC (see Conclusion 4.1) and, for whatever this K, the
feedback system poles of this observer are guaranteed to be the eigenvalues
of 4 — BK and F (see Conclusion 4.2). In addition, every effort has been
made to realize the robustness property of this state feedback control (see
Conclusion 4.3).

The design algorithms of this step are described in Chaps 5 and 6.
Conditions(4=1)-isssatisfied-firstzina€hap. 5 and for all plant systems, and
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(4.3) is then best satisfied in Chap. 6. It is proved in Sec. 6.2 that for all plant
systems either with at least one stable transmission zero or with m > p, the
exact solution of (4.1) and (4.3) can be computed, with the rank of matrix C
also maximized by the available remaining freedom of (4.1) and (4.3). This is
significantly more general than the existing exact LTR state observers, and is
general for most plant systems (see Exercises 4.3 and 4.7). For all other plant
systems, the least square solution of (4.3) can be computed, without large
gain.

The second step fully determines the output part of the observer (3.16b)
by designing the dynamic matrix 4 — BKC, where K is the completely free
parameter of (3.16b). The loop transfer function Lgy(s) is indirectly (though
much more effectively) determined by this design (see Chaps 2, 3, 8 and 9).
The explicit design algorithms are described in Chaps 8 and 9.

It should be noted that the design of 4 — BKC is exactly compatible
mathematically with the static output feedback design 4 — BK,C of
Subsection 3.2.2. The only difference is that rank (C)=m while rank
(C) = r + m=m, where r is the number of rows of T, or the order of the
observer of the first step.

In addition, because the rank of C of the first step can be between n
and m, this new design approach unifies completely the exact LTR state
observer, which corresponds to rank (C)= maximum #, and the static
output feedback, which corresponds to rank (C) = m = minimum of rank
(C). This unification will be discussed in Sec. 6.3. In this sense, we also call
the feedback control which is implemented by this new observer as the
“generalized state feedback control.”

Because (4.3) (TB=0) is satisfied in the first step of this design
approach, the corresponding observer of (3.16) will have the following state
space model

2(t) = Fz(t) + Ly(1) (4.10a)
— Kx(t) = —Kzz(t) — K,y(1) (4.10b)

Because this observer (which is also called “feedback compensator™) is
not involved with the plant system input u(z), we call it the “output feedback
compensator.” In addition, compared to static output feedback systems of
Sec. 3.2.2, this compensator has an additional dynamic part with state
z(1) = Tx(1), and the control signal produced by this compensator has an
additional term Kzz(¢) = K;Tx(t), which is provided by the above
additional dynamic part. Therefore this compensator completely unifies
the static output feedback as its simplest case and is called a “dynamic
output feedback compensator.”
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The feedback system of this compensator is depicted in the block
diagram in Fig. 4.3.

Finally, let us clarify three technical arguments concerning this new
design approach.

First, the ideal compensator does not universally exist in practice. The
significant advantage of this new design approach in very significantly more
general robustness realization (see Exercises 4.2, 4.3, 4.6, and 4.7) certainly
has its price—the constrained and therefore weaker state feedback control
Kx(t) = KCx(1) (if rank (C) < n). This is the most serious criticism that has
been downgrading the new design approach of this book. The following
four points will fully answer this criticism.

1. The existing non-constrained and ideal state feedback control is
designed ignoring the key parameters 7" of the realizing observer
and the key parameter C of system output measurement. This is
why its critical robustness properties cannot be actually realized
for almost all open loop system conditions (see Sec. 4.3 and Part
(b) of Exercises 4.2 and 4.6). Then what is the actual advantage of
this existing control?

2. Although our generalized state feedback control is a constrained
state feedback control, this constraint (based on CA[T': C'])
itself implies that the design of our control does not ignore the
realization of this control when not all system state variables are
directly measurable. This is why the robustness properties of our
control are fully realized.

3. Although our control is a constrained state feedback control, it
can achieve the very effective high performance and robustness

Gls] = Clsl-A-1B yt)

yd
K ﬂ‘] [sl-q"ﬂ—-—-—— L

Figure 4.3 Dynamic output feedback compensator which can implement
state feedback control—the new result of this book.
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control—arbitrary pole assignment and partial eigenvector assign-
ment, for a very large portion of open loop systems (see Exercise
4.8). Notice that the assumption of Exercise 4.8 has been criticized
by many as too unfavorable. In addition, our control can virtually
guarantee the stability of its feedback system (see Exercise 4.9,
which has the same assumption as that of Exercise 4.8.)

4. Although our control is a constrained state feedback control, this
constraint itself enabled the complete unification of the well-
established state feedback control and static output feedback
control (see Sec. 6.3). These two existing controls are the extreme
cases of our control in all basic senses such as the control
constraint [no constraint and most constraint (rank
(C) = minimum m)] and the controller order (maximum 7 — m
and minimum 0). Then why accepting these very undesirable
extremes while rejecting their very reasonable modifications and
adjustments (our rank(C) is maximized by all existing remaining
design freedom)?

Of course for any theoretical result, no matter how practical,
reasonable, and favorable, one can always device a special example to
beat it. For example the key proof of the general effectiveness of our control
is based on the assumption of m = p and n — m transmission zeros (see Point
3 above). A system of m = p generically have n — m transmission zeros,
[Davison and Wang, 1974]. However, this well-known fact does prevent the
publication of a comment, which uses a single special system example with
m = p but without transmission zeros, to criticize this new design approach.
The well known fact that even under this cooked-up special example, our
design result is still much better than the existing ones, does not prevent the
publication and the subsequent quotation of this comment either [Tsui,
1996b].

To conclude, the criticism of this new design approach that it cannot
have both ideal control and full realization of this control under all open
loop system conditions, and the rejection of this new design approach
because of this criticism, is unrealistic and unfair.

Second, this new design approach naturally answers another design
problem, that is, given a plant system (A4, B, C), determine the state
feedback gain K which can stabilize the matrix 4 — BK and which can be
realized by an observer with L(s) = Lk, (s). The answer provided by this
new design approach is that 4 — BKC is stabilizable, where C is fully
determined. However, another answer to this problem is that K must
stabilize matrix A — BK and satisfy (3.28a) [Saberi et al., 1991]. As described
iny Theorems3:4;-somesspecial=K-which can stabilize 4 — BK may satisfy
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(3.28a) but not (3.29) = (4.3). In other words, this special K cannot be
derived by this new design approach which is based on (4.3), or (4.3) is not
as necessary as (3.28a).

However, as discussed following Theorem 3.4, the design of K that
stabilizes 4 — BK must also be constrained by (4.1), (4.2), and (3.28a). Such
a design is obviously a theoretical formulation or reformulation only, but
impossible to find a direct, systematic, and general solution because K is
heavily constrained (K or K is constrained). On the other hand, the design
of our K to stabilize 4 — BK is constrained only by K = KC (K is not
constrained), and a direct, systematic, and general solution of this design can
be derived but is also difficult enough (see Syrmos et al., 1994 and Secs 8.1.3
and 8.1.4). In addition, Theorem 3.4 shows that for a free K, our (4.3) is an
equivalent of (3.28a).

This situation is very similar to the theoretical argument on the
necessity of (4.1) to Separation Property (Theorem 4.1). In a challenging
design, the system parameters (including K) simply cannot be cooked to fit
the special case of Example 4.4 in which (4.1) is unnecessary to Theorem 4.1.
Similarly, the cooking up of the system parameters to fit a special case that
satisfies (3.28a) but not (4.3), although arguable theoretically, is totally
meaningless in practical design.

To conclude, the criticism that the formulation (4.3) of this new design
approach is not as necessary as (3.28a) for some special cases—and the
rejection of this new design approach because of this criticism—ignores the
basic difference between the systematic and practical design (in which at
least K should be free) and the theoretical formulation or reformulation,
and is therefore unrealistic and unreasonable.

Third and finally, the dynamic output feedback compensator structure
has certainly appeared before. For example, some such compensators have
been designed for eigenstructure assignment [Misra and Patel, 1989; Duan,
1993b], and some others have been designed from the perspective of LTR
[Chen et al., 1991].

However, none of these existing results satisfies separation property
generally. Because (4.1) is the sufficient condition of separation property
(Theorem 4.1) and the necessary and sufficient condition for the
compensator to generate a state feedback signal Kx(¢) for a constant K,
the other existing dynamic output feedback compensators cannot generate a
signal Kx(r) for a constant K. Not satisfying the separation property also
implies the possibility of an unstable compensator, even though the overall
feedback system is designed satisfactorily.

To conclude, generating a signal Kx(z) for a constant K is the
fundamental feature of existing state space control structures considered to
be-wellsestablished-(suchras-directsstate feedback, static output feedback,
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and observer feedback structures, see Subsections 3.2.1-3.2.3) because it has
several inherent properties and advantages. Because the existing dynamic
output feedback compensator cannot generate Kx(¢) for a constant K, only
the dynamic output feedback compensator of this book can be considered as
well established [see Tsui, 1998b].

With the design approach of this book now formulated, the design
algorithms and solutions to the design problems and formulations imposed
by this approach will be described in the next five chapters (especially Chaps
5 and 6). The purpose is to design a controller with general feedback system
performance and robustness against model uncertainty and input dis-
turbance.

EXERCISES

4.1 Verify the results of Example 4.5, including its dual version.

4.2 Itis very useful to measure the strictness of a constraint or a condition,
by the probability of the plant systems that satisfy this constraint/
condition. To derive a simple expression of this probability, we need to
make the following two assumptions on the open-loop systems. These
two open-loop system-based assumptions are unbiased in the sense
that a good (or bad) assumption is equally good (or bad) to all design
algorithms. An assumption that is much more favorable than that of
Exercise 4.2 will be used for starting Exercise 4.6.

1. Let p. be the constant probability for each plant system
transmission zero to be stable. We assume p. = 1/2 so that each
plant system transmission zero is equally likely to be stable or
unstable. This assumption is reasonable because the plant system
parameters are supposed to be randomly given (so are the values
and positions of plant system transmission zeros), and because the
stable and unstable regions are almost equally sized.

2. We assume m = p so that the number of system transmission zeros
is simply n —m [Davison and Wang, 1974] and so that the rank
(CA[T": C')') is simply m + r, where r is the number of stable
transmission zeros out of the n — m transmission zeros.

(a) Based on this assumption, compute the P, as the probability of r
stable transmission zeros out of n—m transmission zeros.
P,=[r:n—ml(p,) (1 —p,)"", where [r:n— m] is the combina-
tion of r elements out of n — m elements.
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Answer:

n—m= 1 2 3 4 5 6 7 8 9

r

0 1/2 122 122 128 125 1728 127 1728 1/2°
1 112 2/22  3/2°  42° 5/25  6/2° 7/27 828 9/2°
2 122 3/22  6/2* 10/2° 15/2° 21/27 28/28 36/2°
3 128 4/2*  10/2° 20/2° 35/27 56/28 84/2°
4 12 5/25 15/2% 35727 70/2% 126/2°
5 1/25  6/2° 21/27 56/2° 126/2°
6 128 7727 28/2% 84/2°
7 1127 8/2%  36/2°
8 128 9/2°
9 1/2°

(b) Based on the result of Part (a), find the probability of minimum-
phase (r=n—m) forn —m=1 to 8.

Answer:

P, =0.5,0.25,0.125,0.0625,0.03125,0.0156,0.0078,0.0036.  This

probability is too low (and rapidly lower as n — m increases) to be

acceptable.

4.3 One of the sufficient conditions of the new design approach of this
book is at least one stable transmission zero (r > 0, see Conclusion
6.1). Based on the assumption and result of 4.2, calculate the
probability of r > 0 for n —m =1 to 8, and compare this probability
with the probability of minimum-phase P,_,, of Part (b) of 4.2.
Answer:

P(r>0)=1-Py=0.5,0.75, 0.875, 0.9375, 0.9688, 0.9844, 0.9922,
0.9964.

The probability P(r > 0) of this new design approach is almost 100%
as soon as n —m is > 3, and is very significantly greater than P,_,,
(probability of minimum-phase, one of the necessary conditions of the
existing LTR results).

4.4 The sufficient condition for the generalized state feedback control of
this book to assign arbitrarily given poles and some eigenvectors is
r+m+p>n,orr>n—m—psee (6.19) or Step 2 of Algorithm 8.1].
Based on the assumption and result of 4.2, calculate the probability of
r>n—m—p (=100%if n —m —p < 0).

Copyright 2004 by Marcel DekKer, Inc. All Rights Reserved.



Answer:

n= 3 4 5 6 7 8 9 10
m=p= % % % % % % % %
2 100 75 50 31.25 18.75 10.94 6.25 3.52
3 100 100 100 87.6 68.75 50 34.38 22.66
4 100 100 100 100 100 93.75 81.25 65.63

Compared to the popular static output feedback control, the
probability to achieve this arbitrary pole assignment and partial
eigenvector assignment is 0% in the above table if the number is not
100%. Thus the improvement of our generalized state feedback control
from the static output feedback control is very significant.

4.5 The sufficient condition for the generalized state feedback control of
this book to assign arbitrary poles and to guarantee stability is
(r+m)p>norr>n/p—m [see (6.18), Adjustment 2 of Sec. 8.1.4,
and Wang, 1996]. Based on the assumption and result of 4.2, calculate
the probability of r > n/p —m (= 100%if n/p —m < 0).

Answer:
n= 3 4 5 6 7 8 9 10 1 12
m=p= % % % % % % % % % %
2 100 75 88 69 81 66 77 63 75
3 100 100 100 100 100 100 98 99 99+ 98

The probability is very high as soon as m is increased higher than 2,
and decreases very slowly so that no substantial decrease can be shown
in the above table. For example, it can be calculated that when n = 16,
the probability is still 98% for m =3, and that when n = 26 the
probability is still 99.7% for m = 4. This result indicates that the great
majority of the open loop systems can be guaranteed of arbitrary pole
assignment and stabilization by our generalized state feedback control.
Compared to the popular static output feedback control, the
probability to achieve this arbitrary pole assignment is 0% in the above
table if the number is not 100%. Thus the improvement of our
generalized state feedback control from the static output feedback
control is very significant.
4.6 Repeat 4.2 by changing p. to 3/4. This new p. implies that each plant
system transmission zero is three times more likely to be stable than to
be unstable. This p. is significantly more favorable than the half-and-
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half p. of 4.2 to 4.5, even though that old p. is still reasonable (see 4.2).
Therefore we may assume that most of the practical values of p. would
fall between these two values of p..

(a) Answer:
P, = (assume p. = 3/4)

n—m= 1 2 3 4 5 6 7 8

r

0 1/4 1/4? 1/43 1/4* 1/4° 1/48 1/47 1/48
1 3/4 6/42 9/4° 12/4% 15/4° 18/4° 21/47 24/4®
2 9/4% 27/43 54/4% 90/4° 135/45 189/47 252/4®
3 27/4° 1084° 270145 540/4°  945/47  1,512/4°
4 81/4* 405/45  1,215/4° 2,835/47  5,670/4°
5 243/4%  1,458/4° 5,103/47 13,608/4°
6 729/4°  5,103/47 20,412/4°
7 2,187/47 17,496/4%
8 6,561/4°

(b) Based on the result of Part (a), find the probability of minimum-

phase (r=n—m) forn—m=11to 8.

Answer:
P,y =0.75,0.56,0.42,0.32,0.24,0.18,0.13,0.1.

Although much higher than the corresponding probabilities of
Exercise 4.2, the P,_,, is still lower than 1/2 as soon as n — m > 2, and
is decreasing as n — m increases.

4.7 One of the sufficient conditions of the new design approach of this
book is at least one stable transmission zero (r > 0, see Conclusion 6.1).
Based on the assumption and result of 4.6, calculate the probability of
r>0 for n—m=1 to 8§, and compare this probability with the
probability of minimum-phase P,_,, of Part b of 4.6.

Answer:

P(r>0)=1-Py=0.75,0.9375,0.9844,0.9964, . ..

The probability P(r>0) of this new design approach is almost 100%
as soon as n—m>1, and is very significantly greater that P,_,,
(probability of minimum-phase, one of the necessary conditions of the
existing LTR designs).

4.8 The sufficient condition for the generalized state feedback control of
this book to assign arbitrarily given poles and some eigenvectors is
r+m+p>n,orr>n—m-—p (see (6.19) or Step 2 of Algorithm 8.1).
Based on the assumption and result of 4.6, calculate the probability of
r>n—m—p (=100% if n—m—p<0).
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100 94 84 74 63 53 44 37
100 100 100 98 97 90 83 76
100 100 100 100 100 996 98 96

A WN 3>

Compare to the popular static output feedback control, the
probability to achieve this arbitrary pole assignment and partial
eigenvector assignment is 0% in the above table if the number is not
100%. Thus the improvement of our generalized state feedback control
from the static output feedback control is very significant, is much
more significant than that of Exercise 4.4, and makes this very effective
and difficult design goal (see Chaps 8 and 9) achievable to a very large
portion of practical systems. This table of data should be most
relevant among all tables, to the practical and current high
performance and robustness system design.

4.9 The sufficient condition for the generalized state feedback control
of this book to assign arbitrary poles and to guarantee stability is
(r++m)p>norr>n/p—m[see (6.18), Adjustment 2 of Sec. 8.1.4, and
Wang, 1996]. Based on the assumption and result of 4.6, calculate the
probability of r>n/p —m (=100% in n/p —m <0).

Answer:
n= 3 4 5 6 7 8 9 10 11 12
m=p= % % % % % % % % % %
2 100 94 98 95 98 96 99 97
3 100 100 100 100 100 100 994+ 99+ 99+ 99+

The probability is almost all 100%, and does not decrease as n increases.
This result indicates that arbitrary pole assignment and stabilization are
virtually guaranteed by our generalized state feedback control.

Compare to the popular static output feedback control, the
probability to achieve this arbitrary pole assignment is 0% in the above
table if the number is not 100%. Thus the improvement of our generalized
state feedback control from the static output feedback control is very
significant and much more significant than the improvement of Exercise 4.5
(which is based on a less favorable assumption of 4.2).
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5

Solution of Matrix Equation TA— FT = LC

Chapter 4 proposed the new design approach of satisfying (4.1) and (4.3)
first, and explained the necessity and advantages of this approach. The
problem of solving (4.1) and (4.3) was first raised in Tsui [1987b]. Its
satisfactory solution appeared in Tsui [1992], much delayed from its first
verbal presentation at the 1990 American Control Conference. This solution
has made this new design approach possible [Tsui, 2000].

The design algorithms of (4.1) and (4.3) are presented in Chaps 5 and
6, respectively. Chapter 5 has two sections.

Section 5.1 introduces the algorithm for computing the block-
observable Hessenberg form of the plant system’s state space model.
Although-this-computation-is-unneeessary for the analytical solution of
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(4.1), it significantly improves the numerical computation of this solution,
and naturally separates the observable part from the unobservable part of
the plant system.

Section 5.2 presents the solution of (4.1). It demonstrates also the
analytical and computational advantages of this solution over other existing
solutions of (4.1).

5.1 COMPUTATION OF A SYSTEM'S OBSERVABLE
HESSENBERG FORM

5.1.1 Single-Output Systems

The Hessenberg form matrix is defined as follows:

x * 0 0
x x 0
A= : 5.1
0 (5.1)
*
X
_)C )C_

[T3WLE]

where the elements “x” are arbitrary and the elements “*”” are nonzero. The
matrix of (5.1) is also called the “lower Hessenberg form™ matrix. The
transpose of the matrix form (5.1) is called the “upper Hessenberg form.”

The Hessenberg form is the simplest possible matrix form which can
be computed from a general matrix by orthogonal matrix operation without
iteration. For example the Schur triangular form, which differs from the
Hessenberg form by having all “*” entries of (5.1) equal 0, is computed by
iterative methods (QR method).

In the established computational algorithms of some basic numerical
linear algebra problems, whether in the QR method of computing matrix
eigenstructure decomposition [Wilkinson, 1965] and singular value decom-
position [Golub and Reinsch, 1970], or in the computation of solution of the
Sylvester equation [Golub et al., 1979] and the Riccati equation (Laub, 1979,
Sec. 8.1), the computation of the Hessenberg form has always been the first
step [Laub and Linnemann, 1986]. As the first step of the design algorithm
for solving (4.1), a special form of system matrix (4, C) called “observable
Hessenberg form,” in which matrix A4 is in the lower Hessenberg form of
(Sal)spispalsogcomputeds[VangDoorsenget al., 1978; Van Dooren, 1981]. The
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Solution of Matrix Equation TA— FT = LC

single-output case of this form is

0 0
CH x 0 ... 0
= x x * 0 (5.2)
HAH ISR |
%
X
_)C . X X_

where matrix A is an unitary similarity transformation matrix (H'H = I)
which transforms the plant system matrix pair (4, C) into the form of (5.2).

The matrix H and its result (5.2) can be computed by the following
algorithm.

Algorithm 5.1 Computation of Single-Output Observable
Hessenberg Form System Matrix

Step 1: Letj=1,H=1,¢;=C, and 4, = A.

Step 2: Compute the unitary matrix H; such that ¢;H; = [¢;,0...0]
(see Appendix A, Sec. 2).

Step 3: Compute

i Gl

[ EETERTR (53)
A x i A }n _;

Step 4: Update matrix

where Jj=j-is-an-identity; matrix with dimension j — 1.
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Step 5: If ¢4y of (5.3) equals 0, then go to Step 7.

Step 6: Letj=j+ 1 (so that ¢;; and 4;;; of (5.3) become ¢; and 4;,
respectively). If j = n then go to Step 7; otherwise return to
Step 2.

Step 7:  The final result is

[ 0 0 0 07
al (&) 0 e 0
CH : a
H' AH
¢
X aj; 0 0
L X A,
C, 0
Ald, = 0|l (5.4)
X Ay | In—j

where the matrix pair (4,, C,) is in the observable
Hessenberg form of (5.2) and is separated from the
unobservable part of the system A,. The dimension of this
observable part is j but will be replaced by n elsewhere in this
book because only observable systems are being considered.
(see Exercise 5.4).

5.1.2 Multiple Output Systems

In multi-output systems of m outputs, C is a matrix of m rows and is no
longer a row vector. The corresponding observable Hessenberg form in this
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case is the so-called block-observable Hessenberg form, as in:

¢, 0 ... ... ... 0 }tm

A C, 0 0 }Wll

CH A22 C3 : }le

e | = (5.5)
H AH
0
: . .Gy | Imy

R Ay | tmy

TR S m,

where the A4 is an m; x m; dimensional arbitrary matrix block, and C; (j =
I,...,v) is an mj_; xm; dimensional “lower-echelon matrix”
(mp=mzmzmy>=---=m, >0). We will use the following example to
illustrate the lower-echelon-form matrix.

Example 5.1

All lower-echelon-form matrices with three rows are in the following seven
different forms:

*0 0 0 0 0 0 * 0 0
x ol lx *l o x oof, | oo, x|, ||, |0

* * * s
X X X x X b X X

13 ’s e

where entries are arbitrary and entries are nonzero.

From Sec. A.2 of Appendix A, there exists a unitary matrix H; such
that C;H; = [C;, 0 ... 0] for any matrix C; with m;_; rows, where C; is
an m;_; x m; dimensional lower-echelon matrix.

From Example 5.1, all m; columns of C; are linearly independent of
each other, and so are the m; rows (those with a “*” element) of C;. Each of
the other m;_; —m; rows (those without a “*” element) can always be
expressed as a linear combination of the linearly independent rows which
aresabovesthis-linearly-dependentzrowsin C; (see Sec. A.2 of Appendix A).
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Example 5.2

In the last six of the seven matrices of Example 5.1, the linearly dependent
rows are, respectively, the 3rd, the 2nd, the 1st, the 3rd and 2nd, the 3rd and
Ist, and the 2nd and 1st of the corresponding matrix. All three rows of the
first matrix are linearly independent of each other.

For each of the last six of the seven matrices C; (j=2,...,7) of
Example 5.1, there exists at least one row vector d; such that d;C; = 0.
For example, d;=[x x 1],[x I 0],[1l 0 O0],[x 0 1] or
[x 1T 0],[0 x 1] or [1 0 0], and [0 1 0] or [1 O 0], for
Jj=2,...,7, respectively. It is clear that in these d; vectors, the position of
element “1” always corresponds to the hnearly dependent row of the
corresponding C;, while all “x” elements are the linear combination
coefficients for that linearly dependent row. It is also clear that these
coefficients correspond only to the linearly independent rows which are
above that linearly dependent row.

Without loss of generality, we assume m; = m, so that all m system
outputs are linearly independent [Chen, 1984]. In other words, each row of
matrix C corresponds to a linearly independent output. As in the single-
output case, during the computation of the block-observable Hessenberg
form, if a row of C; becomes 0 or becomes linearly dependent on its previous
rows of Cj, then the corresponding output is no longer influenced by more
system states. Thus this row/column will disappear at the subsequent
C;(i > j) blocks (or no longer appear at the observable part of the system).
With this adaptation, Algorithm 5.1 can be generalized to the following
Algorithm 5.2 for multi-output case.

Algorithm 5.2 Computation of Block-Observable
Hessenberg Form

Stepl: Letj=1,H=1,C;=C,A4A, = A ,my=m, and ny = 0.

Step 2:  Compute a unitary matrix H; such that C;H; = [C;,0...0],
where C; is an m;_; x m; dimensional lower echelon matrix.

Step 3: Compute

A+ G dmy
HAH= | X : 4 (5.6)
2
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Step 4:

Update matrix

Vi

where /' is an identity matrix with dimension n;_;.

Step 5: nj =n_y +m;. If nj=norif C;yy =0, then let v =j and go
to Step 7.
Step 6: Let j =j+ 1 (so that the C;4y and 4,1 of (5.6) become C;
and 4;, respectively), and return to Step 2.
Step 7:  The final result is
[Ci 0 0 0 07 tm
Ay G
CH A
PR = 0
H AH
G,
AVl Avv 0 0
i X A, )
[ C, 0
= | 4, 0 (5.7)
X A,

where the matrix pair (4,, C,) is already in the block-
observable Hessenberg form (5.5) and is already separated
from the unobservable part A, of the system. The dimension
of 4, is nj = my + --- + m, (replaced by n in the rest of this
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It is clear that Algorithm 5.2 is a generalized version of Algorithm 5.1, when
the parameter m is generalized from 1 to m (>1). The main computation of
this algorithm is at Step 3. According to Sec. A.2 of Appendix A, the order
of computation of this algorithm (based on Step 3) is about 4r3/3.

Definition 5.1

From the description of the block-observable Hessenberg form (5.5), each
row of matrix C of (5.5) corresponds to one of system outputs and is linked
to one more system state if that row is linearly independent in the next
matrix block Cjyi of (5.5). Therefore the number of system states which
influence the i-th system output equals the number of matrix blocks C; in
which the i-th row of C is linearly independent. We define this number as the
i-th observability index v;,i = 1,...,m.

It is clear that v; = if that i-th row becomes linearly dependent
in matrix block Cji, and that vi+---4+v, =n. It is also clear that
max{v;} =v of Step 5, and that all observability indices can be
determined by Algorithm 5.2.

Another set of parameters m;,j = 1,...,v of (5.5) can also be used to
indicate the observability index. From the description of (5.5) and
Definition 5.1, m; indicates the number of observability indices which are
ZJ.

Example 5.3

Let the block-observable Hessenberg form of a four-output and ninth-order
system be

i 0 0 0

[c}_ A1 G 00
| Ay An C3 0
Az Ayn Az Cy
Ay Agr Asz A
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Solution of Matrix Equation TA— FT = LC

[* 0 0 0:0 0 0 0 0])
+ 0 0:0 0 0 0 0
>m0:m:4
x & 0:0 0 0 0 0
X x #:0 0 0 0 0|/
X X x:* 0 0: 0 0 )
X X X X : + 0: 0 0 > 4
my =
X X X X: X X 0: 0 0 :
ol x x x x:ix X #: 0 0|/ (5.8a)
X X 0: O
X X X:Xx X X : +: 0 m, =3
X x: 0
X X X X:Xx X xX:Xx o+ =1
| x x Xx x:x x x: Xx: Xx|}m=1

From Definition 5.1, corresponding to the four system outputs which
are represented by the nonzero elements with symbols “*,” “4.” “&,” and
“#,” respectively, the observability indices are vi =2,v; =4,v3 =1, and
v4 = 2. These indices also equal the number of appearances of the
corresponding  symbols in  (5.8a). We can  verify that
Vid+va+wvstva=m+m+m3+my=n=29, and that v=v, =4. We
can also verify that m; equals the number of observability indices which are
greater than orequal toj (j=1,...,v=4).

In the literature Chen [1984], the block-observable Hessenberg form
(5.8a) can be further transformed to the block-observable canonical form
(1.16) by elementary similarity transformation:

i 0 0 07

[CE}_Allzo

E-'AE A, 0 Iz 0
A 0 0 I
LAs 00 0 |
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1 0 0:0 0 0 0 0
x 1 0 0:0 0 0 0 0
x x 1 0:0 0 0 0 0
X X X 1:0 0 0 0 0

x  x:1 0 O0: 0 0

x x:0 1 0: 0 0
X x x:0 0 0: 0 0
X x x Xx:0 0 1 0 0

- ' : (5.8b)

X X X x:0 0 0: 0: O

where matrix E represents elementary matrix operations [Chen, 1984] and is
usually not a unitary matrix.

The comparison of (5.8a) and (5.8b) shows that the block-observable
canonical form is a special case of the block-observable Hessenberg form, in
the sense that in (5.8b), all nonzero elements (those symbols) of C; blocks of

(5.8a) become 1, and all other arbitrary “x”’ elements of (5.8a) except those
in the left 7, columns become 0.

Although the parameters of a block-observable canonical form system
matrix can be substituted directly into the polynomial matrix fraction
description of its corresponding transfer function G(s) = D~'(s)N(s) (see
Example 1.7), this unique advantage is offset by the unreliability of its
computation (matrix £ of (5.8b) is usually ill conditioned [Wilkinson,
1965]). For this reason, the actual design algorithms of this book are based
only on the observable Hessenberg form.
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5.2 SOLVING MATRIX EQUATION TA—- FT = LC

The computational algorithm for the solution of matrix equation (4.1)
(TA — FT = LC) is presented in this section. Here the nxn and mxn
dimensional system matrices (4, C) are given and are observable. The
number of rows of solution (F, T, L) is presumed to be n — m, although this
number is freely adjustable because each row of this solution will be
completely decoupled.

To simplify the computation of solution of (4.1), we have computed
block-observable Hessenberg form (H'AH, CH) in Algorithm 5.2. Sub-
stituting (H'AH, CH) into (4.1), we have T(H'AH) — FT = L(CH), which
implies that the solution matrix 7 of this equation must be postmultiplied by
H', in order to be recovered to the solution (TH’), which corresponds to the
original (4, C).

Mathematically, the eigenvalues (4;,,i = 1,...,n —m) of matrix F of
(4.1) can be arbitrarily given. We will, however, select these eigenvalues
based on the following analytical understandings.

First, these eigenvalues must have negative and sufficiently negative
real parts in order to achieve observer stability and sufficiently fast
convergence of observer output to Kx(¢) (Theorem 3.2).

Second, the magnitude of these eigenvalues cannot be too large
because it would cause large observer gain L (see Secs. 3.1 and 4.3).

Third, each plant system stable transmission zero must be matched by
one of the eigenvalues of F. This is the necessary condition for the
corresponding rows of 7 to be linearly independent if TB=0 (see Sec. 6.2).

Finally, all n — m eigenvalues of F are the transmission zeros of the
corresponding observer feedback system [Patel, 1978] and should be selected
with the properties of transmission zeros in mind (see Sec. 1.4).

There have been some other suggestions for the selection of
eigenvalues of F, but they are unsatisfactory. For example, the suggestion
that the ecigenvalues of F other than those which matched the stable
transmission zeros be negative infinity with Butterworth pattern, is criticized
by Sogaard-Andersen [1987]. The other suggestion that all eigenvalues of F
be clustered around the plant system stable transmission zeros causes near
singular matrix C = [T": C'), and therefore large and unsatisfactory
observer output gain K in (4.2) [Tsui, 1988b]. Hence the eigenvalues of F
should be selected by following the preceding four guidelines.

Once the eigenvalues of matrix F are selected, the matrix F is required
in our algorithm to be a Jordan form matrix, with all multiple eigenvalues
forming a single Jordan block [see (1.10)]. Hence the matrix F is fully
determined. In addition, each row or each block of rows of solution
(F, T, L) corresponding to a Jordan block of F is decoupled and can be
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separately computed. Therefore, our algorithm treats the following two
cases of Jordan block size (=1 or > 1), separately.

5.2.1 Eigenstructure Case A

For distinct and real eigenvalue 4; (i=1,...,n—m) of F, (4.1) can be
partitioned as

t,‘A—;uit,':L‘C7 i:l,...,n—m (59)

where t; and 1; are the i-th row of matrix 7 and L corresponding to 4;,
respectively.
Based on the observable Hessenberg form (5.5) where

c=[C, 0 ... 0]

m

Eq. (5.9) can be partitioned as the left m columns

tl(A — )»il) |:161:| = 1,C|:Igl:| = 1,‘C1 (5103)

and the right n — m columns

t,-(A—)V,-I)[IO ]zlic{lo ]:0 (5.10b)

n—m n—m

Because C, of (5.5) is of full-column rank and 1; is free, (5.10a) can always
be satisfied by 1; for whatever t;. Therefore, the problem of (5.9) is simplified
to the solving of t; of (5.10b) only, which has only n — m columns instead of
the n columns of (5.9).

From observability criteria and the form of matrix C, the matrix
product on the left-hand side of (5.10b) must have m linearly dependent
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rows. Furthermore, this matrix

G 0o ... .... 0 7
An — 4T C;
(A/l,-l){lo } : R (5.11)
n—m . '. 0
: C,
L Av2 o Avv _/lil_

maintains the same form of that of the right n — m columns of matrix 4, if 4
is in block-observable Hessenberg form (5.5). From the definition of this
form, the C; matrices (j =2,...,v) and the matrix of (5.11) are in lower
echelon form. In other words, the n — m linearly independent rows of matrix
(5.11) are clearly indicated as the rows corresponding to the nonzero
elements of matrices C; (j =2,...,v). Each of the rest of m rows of matrix
(5.11) can always be expressed as a linear combination of its previous and
linearly independent rows in that matrix. Thus we have the following
conclusion.

Conclusion 5.1

The solution t; of Eq. (5.10b) has m basis vectors d; (j=1,...,m). If
(4, C) is already in block-observable Hessenberg form, then each of these m
basis vectors can correspond to one of the m linearly dependent rows of
matrix (5.11), each can be formed by the linear combination coefficients of
the preceding and linearly independent rows of this linearly dependent row,
and each can be computed by back substitution.

Example 5.4 For a Single-Output Case (m=1)

From (5.2),
) 0
x *
w-an),0 |-
n-l : 0
. *
—x xj_
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which has only one (m = 1) linearly dependent row (the row without a
element). The solution t; therefore has only one basis vector and is unique,
and can be computed by back substitution.

Example 5.5 For a Multi-Output Case

In Example 5.3 (m = 4), for each 4;, the corresponding solution t; of (5.10b)
has m (= 4) basis vectors as

di=[x x 0 x 1 0 0 : 0]
dp=[x x 0 x 0 0 x 1]
ds=[x x 1 0 0 00 0 : 0]
dgs=[x x 0 x 0 x 1 0 0]

Each of the above vectors d;; has a ““1”” element, whose position corresponds
to where the j-th row becomes linearly dependent in (5.82a)
(j=1,...,m=4). The “x” elements of d; are the linear combination
coefficients of the linearly independent and preceding rows on that j-th
linearly dependent row. Because each d;; vector satisfies (5.10b), the actual
solution t; of (5.10b) can be an arbitrary linear combination of the d;’s.

At the same position of each ““1” element of d;;, the elements of other
three basis vectors are all 0. Therefore the four basis vectors are linearly
independent of each other.

From Conclusion 5.1, for multiple (<m) and real eigenvalues
(say, ;i =1,...,m), it is possible to assign their corresponding rows of T
as t;=d; (i=1,...,m). This way, these multiple eigenvalues become
equivalent of the distinct eigenvalues in the sense that their corresponding
Jordan block in F becomes diag{4;,i = 1,...,m}. However, by making this
assignment, there is certainly no more freedom Ileft for solutions
t; (i=1,...,m), and hence this possible solution is not recommended for
solving (4.1) and (4.3) [but is recommended for solving the dual of (4.1) in
eigenstructure assignment problems of Chap. 8].

Replacing the block-observable Hessenberg form (5.8a) by its special
case, the block-observable canonical form (5.8b), the four basis vectors of t;
of (5.10b) are

,1_[},000:100:0:0]
=[0 200 :0 2 0 : 4 : 1]
,37[0010 00 :0 : 0]
dy=1[0 0 0 2 : 0 L : 0 : 0]
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These four vectors not only are linearly independent of each other, but also
have additional algebraic properties as follows.

Conclusion 5.2

From the above example, for a fixed parameter j (j = 1,...,m), any set of
v; of the n d;; vectors are linearly independent, because these vectors form a
matrix which equals a v; dimensional Vandermonde matrix added with n —
v; zero columns. This conclusion is valid for block-observable Hessenberg
form-based vectors too, because (5.8a) and (5.8b) are similar to each other.
This conclusion can also be extended to multiple eigenvalue and generalized
eigenvector cases. See the more rigorous proof in Theorem 8.1.

It is also obvious from the above example that for a fixed parameter
J (j=1,...,m), any v; — | of the n d;; vectors are also linearly independent
of matrix C of (5.5).

5.2.2 Eigenstructure Case B

For complex conjugate or multiple eigenvalues of F, the results of Case A
can be generalized.
Letting /; and 4;; be a+ /b, and their corresponding Jordan block be

a b
e
as in (1.10), the corresponding Eqs of (5.9), (5.10a), and (5.10b) become
t; t; 1;
A—F; = C (5.12)
ti tiv 1
ti Im ti ]m 11'
e Jlsl-Ale ) [5]- L Je 5139
tit1 0 ti 0 14
and
t; 0 t; 0 |
|:ti+1:|A|:1nm:| _Fi|:ti+1:| |:Inm:| =0 (513b)
respectively.

Because in (5.13a) C; is of full-column rank and 1; and 1,,; are
completely-free;we-need-only-tossolves(5.13b) for t; and t; ;. (5.13b) can be
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written as a set of linear equations:

0 : T
A[ ] 0
y o~ :

o3 (5.13¢)

where the two matrices in the bracket have dimension 27 x 2(n — m), and
can be expressed as

10 0 o
o tea[i] e el

respectively, where the operator “®” stands for “Kronecker product.”

It is not difficult to verify that like the matrix (5.10b) of Case A, the
whole matrix in the bracket of (5.13c) has 2m linearly dependent rows.
Therefore the solution [t;:t;;] of (5.13c) has 2m Dbasis vectors
[dl] : di+l,i](j = 17 cee 72m)

Example 5.6 Single-Output Case (m=1)

Let matrix 4 of (5.2) be

x 0
[x x *] (n=23)
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then the matrix of (5.13c) will be

[* 0 0 0]
X * b 0
X X 0 b
0 0 0
-b 0 X *
L0 —-b ' x x|

Clearly, this matrix has 2m (= 2) linearly dependent rows which do not have
“*” elements. Therefore the solution [t; : t;] has 2m (= 2) basis vectors of
the following forms:

[di : dipg]=[x x 1 : x x 0]
and
[diz : di+172] = [x x 0 : x x 1]

where the position of element “1”° corresponds to one of the two linearly
dependent rows, and “x”’ elements are the linear combination coefficients of
all linearly independent rows. These two basis vectors can be computed
separately, either by modified back substitution method or by Givens’
rotational method [Tsui, 1986a].

For a multiple of ¢ ecigenvalues /; and their corresponding
g-dimensional Jordan block

L, 1 0 ... ... 0]
o 4 1
Fl = 0
0
A1
K 0 A
wheres " sstandssforstransposegitsyeorresponding (5.12) and (5.13a,b,¢) are,
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respectively:

t t 11
: |4 - F; =1|:|C (5.14)
L & ] ty 1,
[t ] t; 1,
I I
A{(’)”}—F, [(ﬂ: e (5.15a)
Lt ] ty 1,
[t ] t
' 0 "1 0
A — F; =0 (5.15b)
[)‘I*Wl 171717‘1
Lt | ty
and
0 , 0
= . ] ,®4 / -F® / =0 (5.15¢)
where t; (i = 1,...,q) are the ¢ rows of solution matrix T corresponding to

the Jordan block F;.

Because C; is of full-column rank and 1, (i=1,...,q) are free in

(5.15a), we need to solve (5.15b,c) only for t; (i=1,...,q).

It is not difficult to verify that like (5.13c), the whole matrix in the
bracket of (5.15c) has gm linearly dependent rows. Thus the solution

[ti ... tq} of
[d]_/ el dq,'},jZI,...

5.15¢) has m
( q
,qm.

basis

vectors

Because of the simplicity of bidiagonal form of the Jordan block Fj,

(5.15b,c) can be expressed as

) 0 0 .
t_/(A_/W])|:I”_m:|_ j—1|:1”_m:|7 ]_17"'7qat0_0

(5.15d)

Equation (5.15d) shows that all t; vectors except t; are computed based on

13

its previous vector t;,_j. These vectors are called
“defective.”

generalized” or
Because the vectors t; are also the left eigenvectors [see

(1.10)], we also call t; (j=2,...,q9) of (5.15d) “generalized/defective

eigenvectors” [Golub and Wilkinson, 1976Db].

The above cases of 4 and B can be summarized in the following

algorithm for solving (4.1) [Tsui, 1987a].
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Algorithm 5.3 Computation of Solution of Matrix Equation
TA-FT =1LC

Step 1: Based on each eigenvalue of F (say, 4;, which is distinct real,
complex conjugate, or multiple [of ¢]), compute the m, 2m,
and gm basis vectors of the corresponding t;, [t; : t;], and
[t: : ... : tigg1], according to (5.10b), (5.13c), and
(5.15c¢), respectively.

Step 2: The row (or rows) t;,[t;: tiy], and [t; :© ... : tig1]
equal an arbitrary linear combination of their corresponding
set of m, 2m, and gm basis vectors, respectively (i = 1,...,n).
There are a total of nm free linear combination coefficients.

Step 3: After all t; rows and the corresponding matrix 7" are fully
determined in Step 2, satisfy the left m columns of T4 —
FT = LC [or (5.10a), (5.13a), and (5.152a)] by solving

In

(TAFT)[ 0

} =LC (5.16)

The solution L is unique because C; has m linearly
independent columns.

Conclusion 5.3

The above Algorithm 5.3 computes (F, T, L) which satisfies (4.1). It is clear
that the first two steps of the algorithm satisfy the right » — m columns of
(4.1), and Step 3 satisfies the left m columns of (4.1). This solution does not
assume any restrictions and is therefore completely general. The complete
remaining freedom of (4.1) is also expressed explicitly (as the linear
combination coefficients) in Step 2.

Let us analyze the computational reliability and efficiency of this
algorithm.

Because the initial step of an algorithm affects the computation
reliability of that algorithm most, and because most of the computation of
Algorithm 5.3 concerns Step 1, the analysis will concentrate on this step
only.

This step can be carried out by back substitution (see Sec. A.2 of
Appendix A), which is itself numerically stable [Wilkinson, 1965]. However,
thissoperationsrequires-repeated-divisions by those “*’’ nonzero elements of
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the Hessenberg form matrix (5.5). Therefore this step can be ill conditioned
if these nonzero elements are not large enough in magnitude.

According to the Householder method (see Sec. A.2 of Appendix A),
these nonzero elements (computed at Step 2 of Algorithm 5.2) equal the
norm of the corresponding row vector. This step also consists of the
determination of whether that norm is zero or nonzero. Therefore, to
improve the condition of Step 1 of Algorithm 5.3, it is plausible to admit
only the large enough vector norms as nonzero. From the description of
Example 1.5, each of these nonzero elements is the only link between one of
the plant system states to system output. Thus admitting only the large
enough elements as nonzero implies admitting only the strongly observable
states as observable states.

However, reducing the dimension of a system’s observable part also
implies the reduction of system information. This tradeoff of accuracy and
solution magnitude is studied in depth in Lawson and Hanson [1974], Golub
et al. [1976a]. To best handle this tradeoff, the singular value decomposition
(SVD) method can be used to replace the Householder method in Step 2 of
Algorithm 5.2 [Van Dooren, 1981; Patel, 1981]. However, the SVD method
cannot determine at that step which row among the m;_; rows of matrix C;
is linearly dependent or independent, and thus cannot determine the
observability index, which is the analytic information about multi-output
system and is as important as the system order of single-output systems. In
addition, the SVD method cannot result in echelon form matrix C;—the
form which made the simple back substitution operation of Step 1 of
Algorithm 5.3 possible.

The distinct advantage of the computational efficiency of Step 1 of
Algorithm 5.3 is that this computation can be carried out in complete
parallel. This advantage is uniquely enabled by the distinct feature that all
basis vectors d;; are completely decoupled for allj (j = 1,...,m) and for all
i (i=1,...,n)aslong as the 4;’s are in different Jordan blocks of F. In other
words, the computation of d; does not depend on the information of other
d;’s. Only the d;;’s corresponding to the same Jordan block and the same j
are coupled [see (5.13c) and (5.15¢)]. In addition, the back substitution
operation is itself very simple and efficient (see Sec. A.2 of Appendix A).

The basic reason for the good computational properties of Algorithm
5.3 is the Jordan form of matrix F. It should be noticed that simplicity and
decoupling are the fundamental features and advantages of eigenstructure
decomposition. This is the reason that the eigenstructure decomposition (or
Jordan form) is computed from a given matrix in the first place. In the
particular problem of solving (4.1), the eigenvalues are given and are
unnecessary to be computed. Therefore it is certainly plausible to set matrix
Findordansform—the - formsthatissmuch sought after in other problems.

Copyright 2004 by Marcel DekKer, Inc. All Rights Reserved.



Conclusion 5.4

The computation of Algorithm 5.3 is very reliable and very efficient, as
compared with other algorithms for solving (4.1).

The much more important advantage of the solution of Algorithm 5.3
concerns its analytical aspects.

Equation (4.1) is not only the most fundamental equation of observer
feedback compensator (3.16) design (see Chaps 3 and 4), but also the most
fundamental equation of state/generalized state feedback design. The dual
of (4.1) is

AV — VA = BK, (5.17)

which implies 4 — BK = VAV ™!, where K = KV~! is the state feedback
control gain, and V" and A are the right eigenvector matrix and the Jordan
form matrix of the state feedback system dynamic matrix A4 — BK,
respectively.

Because of these reasons, if Lyapunov/Sylvester equations

AV —VA =B | AV -VA=B (5.18)

are considered fundamental in system analysis, and if the algebraic Riccati
equation is considered fundamental in quadratic optimal control system
design, then Eqs (4.1) and (5.17) should be considered the most fundamental
equations in state space control system design.

However, the really general solution of (4.1), with really fully usable
remaining freedom and with fully decoupled properties, was not derived
until 1985 [Tsui, 1987a, 1993a]. For example, the solution of the Sylvester
equation (5.18) has generally been used as the substitute of the general
solution of (5.17) [Tsui, 1986c]. Because (5.18) lacks the free parameter K at
its right-hand side as compared with (5.17) [or lacks parameter L of (4.1)], it
cannot be simplified to the form of (5.10b), (5.13c), or (5.15¢). Thus the
existence of solution of (5.18) is questionable when 4 and A share common
eigenvalues [Gantmacher, 1959; Chen, 1984; Friedland, 1986]. Such a
solution is certainly not a general solution of (4.1) or (5.17).

From Conclusion 5.3, the general solution of (4.1) or (5.17) has been
derived, with explicitly and fully expressed remaining freedom and with
completely decoupled rows corresponding to the different Jordan blocks of
F. Such a solution to such a fundamental equation of design will certainly
have great impact on state space control system design and on the practical
value-of statesspacescontrol-theony=-lnsfact, as will be shown in the rest of
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this book, this solution has uniquely enabled the dynamic output feedback
compensator design [Tsui, 1992, 1993b] (Sec. 6.1), the systematic minimal
order observer design [Tsui, 1985] (Chap. 7), the systematic eigenvalue
assignment [Tsui, 1999a] (Sec. 8.1) and eigenvector assignment [Kautsky
et al., 1985; Tsui, 1986a] (Sec. 8.2), and the robust failure detector design
[Tsui, 1989] (Sec. 10.1).

Figure 5.1 outlines the sequential relationship of these design results.

EXERCISES

5.1 Repeat the computation of similarity transformation to block-
observable Hessenberg form of Example 6.2, according to Algorithm
5.2 (also Algorithm A.1 for QR decomposition).

5.2 Repeat 5.1 for Example 8.7 (dual version).

5.3 Repeat the computation of satisfying (4.1) for Examples 6.1, 6.2, 6.3,
7.3 and 8.1, 8.2, 8.3, 8.4 (Step 1), according to Algorithm 5.3 (first two
steps mainly). Verify (4.1) for these results.

5.4 Partitioning the state of system (5.7) as [X,(#)' : X,(#)']’, the system’s
block diagram can be depicted as in Fig. 5.2 which shows that

Quadratic optimal
control design,

Generalized :
Algorithms 9.1/9.2,
state feed- Chap. 9

ITR design, |pack X=KC,
Algorithm 6. 1| (#2rank(C)>m)| [BoTe assignment by
solve (4.3): |design: generalized state
TB = 0 and |feedback(rank(C)<n),
max{rank(C)}, Algorithm 8.1
Sec. 6.1 Subsection 8.1.3

Solve (4.1):

TA-FT=LC, Minimal order observer

Algorithms design, Algorithm 7.1,

5.1-5.3, | | Jsolve (4.2) with fewest

Chapter 5 possible rows of T,

sesssssssananansnnn Cha.p 7

Dual of (4.1):

|AV-VA=BK, Eigenvector assignment,

pole placement_{_,numerical algorithms 8.2, 8.3

by and analytical rules,

state feedback, Sec. 8.2

Bubsection

8.1.2 Robust failure detector Design of failure
design, Algorithm 10.1, accommodation by

“A solve: O=K{C, some T columnsi—¥adaptive state

=0, and other T columns # 0 feedback control,
Sec. 10.1 Sec. 10.2

Figure 5:1..Sequence of.designsalgorithms of this book.
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()

Figure 5.2 Block diagram of systems with observable and unobservable
parts.

(4o, By, Co) is observable, while the other part of the system
(Ao, Bo, 0) is not. Repeat this proof for its dual case (controllable
Hessenberg form).

5.5 Compute the solution (TAlzf t],L) which satisfies the matrix
equation (4.1) (TA — FT = LC), where [Chen, 1993]

A:[g _1] c=[1 0]

and
F = —4 and — 1, respectively
Answer: For F=—4:T[1 3]'=0= T =[-3t, t,](arbitrary
1 #0), then,L =T[4 0] = —120.
For F=—1:T[1 0]'=0=T=[0 ¢t ](arbitrary
tr #0), then,L=T[1 0] =0.
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6

Observer (Dynamic Part) Design for
Robustness Realization

Step 2 of Algorithm 5.3 revealed the remaining freedom of (4.1). This
freedom will be fully used for the various design applications listed at the
end of Chap. 5.

This chapter describes the first of such applications—observer design
for the guaranteed full realization of the robustness properties of state
feedback control. Failure to realize the robustness properties of this control
is perhaps the drawback that has limited the practical applications of state
space control theory. This chapter will demonstrate for the first time, that
with the full use of the remaining freedom of (4.1), this drawback can be
effectively-overcome-foir-most-open-doop system conditions.
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The design of this chapter will fully determine the dynamic part of the
observer, which can also be considered as a feedback compensator.

This chapter consists of four sections.

Section 6.1 presents the design algorithm that uses the remaining
freedom of (4.1) to best satisfy equation 7B = 0 (4.3). As described in Chap.
3, TB =0 is the key requirement of realizing the robustness properties of
state feedback control [Tsui, 2000].

Section 6.2 analyzes the generality of the above solution of (4.1) and
(4.3), and illustrates this design algorithm with six numerical examples.

Section 6.3 demonstrates a theoretical significance of this design
algorithm—the complete unification of exact LTR state observer feedback
system and the static output feedback system.

Section 6.4 describes the adjustment of observer order, which is
completely adjustable under the design algorithm of this book. The higher
observer order implies a less constrained and therefore a more powerful
generalized state feedback control, while the lower observer order implies an
easier realization of robustness properties of this control.

6.1 SOLUTION OF MATRIX EQUATION TB =0
Let us first summarize the results at Step 2 of Algorithm 5.3. For distinct
and real eigenvalue 1,,

t,‘ = C,‘D[ (618.)
For complex conjugate A; and 4,1,

[ti : tiv1] = [¢; s cip1][Dy 2 Digi] (6.1b)

For multiple of ¢ eigenvalues 4, (j=1i,...,i+q—1),

[t,‘ Lt t[+q_1] = [C,’ Lot cf+(l—1HDi Lt Di+(]—1] (61C)
The dimensions of each row vector t; and ¢; (i = 1,...,n — m) are n and m,
respectively.
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Algorithm 6.1 Solve TB =0 (4.3)[Tsui, 1992, 1993b]

Step 1: Substitute (6.1) into (4.3), we have

¢;[D;B] =0 (6.2a)

[¢; : ¢i1][DiB: Div1B] =0 (6.2b)
and

[ci:...:Ciq1][DiB:...: Diyyq_1B] =0 (6.2¢)
respectively.

Step 2: Compute the solution ¢; (i = 1,...,n —m) of (6.2).

Equation (6.2) is only a set of linear equations (see Appendix A).
Nonetheless, there are two special cases of (6.2) which will be treated
separately in the following. To simplify the description, only the distinct and
real eigenvalue case (6.2a) will be described.

Case A

If the exact nonzero solution of (6.2a) does not exist (this usually happens
when m < p + 1), then compute the least square solution of (6.2a):

¢ = u:n (63)

where u,, is the m-th column of matrix U, and where UXV’' = D;B is
the singular value decomposition of D;B (with nonzero singular values
g;>0,i=1,...,m) of (A.21). The corresponding right-hand side of
(6.2a) will be o,,v,,, where v, is the m-th row of matrix V' of (A.21) (see
Example A.6).

Because the solution of case A implies that TB#0, the corresponding
observer (3.16) cannot be considered as a dynamic output feedback
compensator (4.10), even though this observer approximates the dynamic
output feedback compensator requirement (7B = 0) in least-square sense.

Case B

If the exact solution of (6.2a) is not unique (this usually happens when
m > p+ 1), then the remaining freedom of (6.2a) [and (4.1)] exists. This
freedomewillsbe-fully-used-tommaximize the angles between the rows of

Copyright 2004 by Marcel DekKer, Inc. All Rights Reserved.



matrix C = [T’ : C']' by the following three substeps. The purpose of this
operation is to best strengthen the state and generalized state feedback
control Kx(7) = KCx(t) which is eventually implemented by this observer.

Step 2a: Compute all m —p possible and linearly independent
solutions ¢;; of (6.2a) such that

CU'[D[B}:O, j:l,...,m—p (64)
Step 2b: Compute matrix

¢ D
D, = : (6.5)
ci,m—p Di

Step 2c: Compute the m —p dimensional row vector ¢; (i =
l,...,n—m) such that the angles between the rows

0 -1 0
t; =¢;D; 6.6
|: ) f— :| ¢ |: Ly :| ( )

are maximized (as close to +90° as possible). The explicit
algorithms of Substep 2¢ will be described as Algorithms
8.2 and 8.3 in Chap. 8. Because of the special form of
matrix C in (5.5), Substep 2c implies the maximization of
the angles between the rows of matrix [77:C']. In
addition, maximizing row vector angles also implies
maximizing the row rank of the same matrix. The second
maximization is much easier than the first (only nonzero
angles between the vectors are required), and is guaranteed
to be achieved by Algorithms 8.2 and 8.3 even though the
first maximization may not be.

It is obvious that 7B = 0 is satisfied or best satisfied by Algorithm 6.1
[after (4.1) is satisfied].

6.2 ANALYSIS AND EXAMPLES OF THIS DESIGN
SOLUTION

Design algorithm 5.3 [for (4.1)] and design algorithm 6.1 [for (4.3)]
completely-determinesthesdynamic-pant of observer feedback compensator
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and essentially define the new design approach of this book. This design is
analyzed theoretically and is illustrated by six numerical examples in this
section.

Conclusion 6.1

A sufficient condition to satisfy (4.1) and (4.3) exactly is m > p. It is obvious
that Algorithm 5.3 satisfies (4.1) for all observable plant systems (4, B, C),
while (4.3) [or (6.2)] can always be satisfied by the remaining freedom of
(4.1) (the ¢; parameters) if m > p.

Another sufficient condition to satisfy (4.1) and (4.3) exactly is that the
plant system has at least one stable transmission zero. This is because from
the property of transmission zeros (say z;) described after Definition 1.5,
there exists at least one vector (say, [t; : I;]) such that

A=al B}_o (6.7)

[ti: LS =[t;: li]{ —-C 0

if m % p. Because z; is matched by an eigenvalue A; of F (see the beginning of
Sec. 5.2), the comparison between (4.1) and the left n columns of (6.7) and
the comparison between (4.3) and the right p columns of (6.7) indicate that t;
and 1; of (6.7) are the i-th row of T and L of (4.1) and (4.3), respectively. In
other words, (4.1) and (4.3) are automatically satisfied together if z; is
matched by 4;.

It should be noticed that the number of rows of solution (F, T, L) of
(4.1) is freely adjustable and can be as low as one. Therefore the existence of
at least one stable transmission zero z; implies the existence of solution of
(4.1) and (4.3).

A sufficient condition for m ¥ p is also a sufficient condition for
m > p, because the former case is more difficult (has less output
measurement information but more controls to realize) than the latter
case, as proved by the first part of this conclusion. Definition 1.5 also implies
that the existence of stable transmission zeros is also a necessary condition
to satisfy (4.1) and (4.3) exactly if m % p.

Conclusion 6.2
It is obvious that Algorithms 5.3 and 6.1 fully used the entire design freedom

of observer dynamic part (F, T, L) (after the eigenvalues of F are
determined)stossatisfy(4=l)rand«(4:3)-and to maximize the angles between
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the rows of matrix C = [T": C'' [see Conclusion 5.3 and Algorithm 6.1
(Case B)].

Conclusion 6.3

If the plant system (A4, B, C) either has n — m stable transmission zeros or
satisfies (1) minimum-phase; (2) rank(CB) = p; and (3) m>=p, then the
resulting matrix C = [T" : C']' of Algorithms 5.3 and 6.1 is nonsingular. In
other words, Algorithms 5.3 and 6.1 will result in an exact LTR state
observer if the plant system satisfies the above conditions.

Proof
The proof is divided into two parts, A and B.

Part A: The plant system has n — m stable transmission zeros

From Conclusion 6.1, for general plant system (A4, B, C) with m % p,
there exists an additional linearly independent row of solution (F, T, L) of
(4.1) and (4.3) if and only if there exists an additional plant system stable
transmission zero. From Conclusion 5.2, the n — m rows of T corresponding
to the n—m stable transmission zeros can always be made linearly
independent of each other and of the rows of matrix C. Thus the necessary
and sufficient condition for the plant system G(s) with m % p, to have an
exact solution of (4.1), (4.3) and a nonsingular matrix C = [T" : C'’, is that
G(s) has n — m stable transmission zeros.

Similar to the last argument of Conclusion 6.1, the sufficient condition
for m # p is also a sufficient condition for m > p.

Part B: The plant system satisfies (1) minimum-phase, (2) rank(CB) = p,
and (3) m=p

First, because m = p and rank(CB) = p guarantee n — m plant system
transmission zeros [Davison and Wang, 1974], the additional condition of
minimum-phase guarantees n — m stable plant system transmission zeros.
Thus the proof of Part A of this conclusion can be used to prove Part B for
the case of m = p.

For the case of m > p of Part B, the proof is indirect via the proof that
the above three conditions are sufficient conditions for the existence of
unknown input observers or exact LTR state observers which satisfy (4.1),
(4.3), and rank (C) = n (see Sec. 4.3). Because Conclusion 6.2 shows that
Algorithms 5.3 and 6.1 fully used the remaining observer dynamic part
design freedom to satisfy (4.1), (4.3) and maximized rank of C after the
eigenvalues-of F are-assignedyand:because the eigenvalues of F and the poles
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of unknown input observers are similarly assigned, matrix C of Algorithms
5.3 and 6.1 will have the maximum rank » and will be nonsingular if the
unknown input observer exists.

There have been a number of such proofs in the literature [Kudva et
al., 1980; Hou and Muller, 1992; Syrmos, 1993b]. It seems that the proof in
Hou and Muller [1992] is most complete and explicit. This proofis presented
in the following, with minor revision.

Let a nonsingular matrix

0=[B:B (6.8)

where B is an arbitrary matrix which makes Q nonsingular. Then make a
similarity transformation on the plant system (A4, B, C):

X(1) = 0 'x(N AR (1) %a(0)] (6.9)

and
(0'40,07'B, CQ)A(B; j; ] , [IOP ] ,[CB: CE]) (6.10)

From (6.9) and (6.10),

ig([) = AnX(t) + AnXy (1) (6.11a)
¥(1) = CBX\ (1) + CB%: (1) (6.11b)

Because m > p and Rank (CB)=p, all columns of CB are linearly
independent. Hence we can set a nonsingular matrix

P=[CB: CB]

where CB is an arbitrary matrix which makes matrix P nonsingular.
Multiplying P~! on the left-hand side of (6.11b) we have

Py s [ o=t o pea] 6.12)
From the first p rows of (6.12),
%,(1) = Ply(0) ~ CBXa(1) (6.13)
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Substituting (6.13) and (6.12) into (6.11), we have the following system of
order n —p

iz(l) = (A22 — A Py CF)YQ([) + Az]Ply(l) (6143.)
AAR(1) + By(1)

Y()APy(1) = P2Cl_?§2(f)ééiz(f) (6.14b)

Because system (6.14) does not involve the original plant system input u(¢),
its corresponding state observer is an unknown input observer. In addition,
if X,(¢) is estimated by this observer, then from (6.13) X;(¢) can also be
estimated. Thus the sufficient condition for the existence of unknown input
observer of the original plant system is equivalent to the detectability of
system (6.14), plus the Rank(CB) = p and m > p conditions which made the
system formulation (6.14) possible.

Because for the system (6.10),

sl — An —An .
Rank —Azl S[n_,, — Azz : 0 (6153)
CB CB .0
7A21 S]n,p — A22
= Rank _
p + Ran { CB CB
=p + Rank |:I"P 0 | :| [_AZI Slnfp :A22:| *Pl CF Ip
0 P CB CB L, 0
shy—A —Ay] In=p
= p + Rank 0 I, p
¢ 0 1 Ym—p
I, ,— A
=2P+Rank[s 1”@ ] (6.15b)

A comparison of (6.15a) and (6.15b) shows that the transmission zeros of
system (6.10) equal the poles of unobservable part of system (6.14).
Therefore, the necessary and sufficient condition for system (6.14) to be
detectable is that all transmission zeros of plant system (6.10) are stable [or
that (6.10) is minimum-phase]. Thus the proof.
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Conclusion 6.4

The conditions that a plant system is minimum-phase and that Rank(CB) = p
are necessary for the plant system to have exact LTR state observer.

Proof

The proof of Conclusion 6.3 shows the condition that all plant system
transmission zeros are stable (minimum-phase) is a necessary condition for
the existence of unknown input observers.

For matrix C = [T": C'' be nonsingular, CB must have full-column
rank if 7B = 0 (see Example A.7).

The conditions of Conclusion 6.3 and 6.4 are summarized in the
following Table 6.1, which shows that the condition of n— m stable
transmission zeros is stronger than the condition of minimum-phase and
rank(CB) = p. The two conditions are equivalent (both necessary and
sufficient) for the case m = p, but the former is not a necessary condition,
while the latter is if m > p; and the latter is not a sufficient condition, while
the former is if m < p. Thus between the two conditions themselves, the
former is a sufficient condition of the latter, while the latter is only a
necessary condition (but not a sufficient condition) of the former. Hence the
former condition is even more strict than the latter. This result conforms
with the existing properties about transmission zeros [Davison and Wang,
1974].

Table 6.1 also shows that in any case the condition of minimum-phase
and Rank(CB) = p is a necessary condition for the existence of exact LTR
state observers. It is difficult to require that a/l existing transmission zeros be

Table 6.1 Necessary and Sufficient Conditions for the Existence of a
Dynamic Output Feedback Compensator Which Implements Arbitrarily
Given State Feedback Control

Conditions m<p m=p m>p

Has n — m stable Necessary and Necessary and Sufficient
transmission sufficient sufficient
zeros

Minimum-phase  Necessary Necessary and Necessary and
and CB full- sufficient sufficient

column rank
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stable (see Exercises 4.2 and 4.6). In SISO systems, rank(CB) =p (or
CB # 0) implies the existence of n—m zeros. In MIMO systems, this
condition is also closely related to the number of zeros [see Davison and
Wang, 1974] and is unsatisfied by many practical systems such as airborne
systems. Thus the existing result of LTR is very severely limited and is in
fact invalid for most plant systems.

From Conclusion 6.1, the new design approach of Algorithms 5.3 and
6.1 requires either the existence of at least one stable transmission zero or
m > p. Because almost all plants with m = p have n — m transmission zeros
[Davison and Wang, 1974], m = p can also be the sufficient condition of
(4.1) and (4.3) for most cases (see Exercises 4.3 and 4.7). Thus the
restrictions of minimum-phase and rank(CB) = p of Conclusion 6.3 are
almost completely eliminated. Thus our new design is valid for most
practical systems. It is also common to have m > p because it is generally
much easier to add measurements (or m) to a system than to add controls
(or p) to a system. This significant generalization of the critical robust
control design is possible because the new design approach of this book
avoids the realization of separately designed and arbitrarily given state
feedback control.

Example 6.1

This is an example of four plant systems which share a common system
matrix pair (4, C)

X X X : 1 0 : 0
X X X : 0 1 0 : 0
X X X : 0 0 1 : 0
A=| x x Xx 0 0 0 1
X X X : 0 0 0 : 0
X X X : 0 0 0 : 0
| X X X 0 0 0 0 |
and
1 0 0 0 0 0 : 0
C=1|x 10 0 0 0 : 0 (6.16)
x x 1 0 0 0 : 0

[TINREE)

where: ‘x’’ssaresarbitraryselements:Thus this example is very general.
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The matrix pair (4, C) of (6.16) is in observable canonical form (1.16)
or (5.8b). The four plant systems are distinguished by their respective B

matrices:
[ 1 0 7 [0 0] [ 1 0]
1 1 0 1 1 0
1 0 1 0 1 0
B = - B,=1|1 0 By=|— 1
— 2 2 2
1 3 1 1 1
| 2 -2 ] |1 1 ] | -2 2]
and
_ i 0
1 1
1 0
B, = -1
-2 —1
-2
L _2 _1 -

Using the method of Example 1.7 we can derive directly the polynomial
matrix fraction description of the corresponding transfer function
G(s) = D~'(s)N(s), where polynomial matrix D(s) is common for all four
systems, and the four different N(s) polynomial matrices are:

(s=2) : (s=2)

Ni(s) =
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and

The four N(s) matrices reveal that while all four systems have
m=3>2=p, only the first and the third systems have one stable
transmission zero —1, and only the fourth system has an unstable
transmission zero 2.

Thus the dynamic matrix F of the four corresponding dynamic output
feedback compensators can be commonly set as

F =diag {-1, -2, -3, —4}

which includes all possible stable transmission zeros of the four plant
systems.

Because Step 1 of Algorithm 5.3 is based on matrices (4, C, F) which
are common for the four plant systems, the result of this step is also
common for the four systems. The following four basis vector matrices for
the four eigenvalues of F are computed according to (5.10b):

10 0 1.0 0 : 1]
D=0 -1 0 010 : 0
0o 0 -1 001 : 0]
4 0 0 20 0 : 1]
D=0 -2 0 010 : 0
0o 0 -2 001 : 0]
9 0 0 30 0 : 1]
Di={0 -3 0 010 : 0
0o 0 -3 001 : 0]
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and

16 0 0O : -4 0 0 : 1
Dy=1| 0 -4 0 : 01 0 : 0
0 0 -4 : 0 0 1 0

The result of Step 2 of Algorithm 5.3 (or Algorithm 6.1) is computed
according to (6.2a):

‘o 1 1D
|0 45 16731,
1 5/6 25/6Ds
1 6/7 36/7)Ds
r 0 —1 1 0 1 10
4 -85 325 -2 4/5 165 1
Tl 9 —15/6 —75/6 -3 5/6 25/6 1
(16 —24/7 —144/7 -4 6/7 36/7 1
0 1 —1]D
no |0 -up
1 0D
0 1 2Dy
0 -1 1 0 1 -1 0
4 2 2 21 -1 1
19 3 0 31 01
0 -4 -8 01 20
‘0 1 2D,
R L 8
0 5D
1o 6D,
0 -1 2 01 -2 0
4 0 -8 20 41
19 0 —15 -3 0 |
16 0 -24 —4 0 1

All Rights Reserved.



and

2 -1 1D
1 —1/5 6/5D;
Ty =
i 0 2]Ds
1 1/7 20/7]Ds
r 2 1 -1 =2 -1 1 2
4 2/5 —12/5 -2 —1/5 6/5 |1
1o 0 -6 -3 0 2 1
16 —4/7 —80/7 —4  1/7 20/7 1

It can be easily verified that the above four matrices satisfy (4.1) [the
right n — m (= 4) columns] and (4.3) (T;B; =0, i =1,...,4). Because the
left m (= 3) columns of (4.1) can always be satisfied by matrix L as shown in
(5.16), we consider the above four matrices the exact solution of (4.1) and
(4.3). The matrix triples (F, T;, L;) (i=1,...,4) fully determine the
dynamic part (4.10a) of the four dynamic output feedback compensators.
This result conforms with Conclusion 6.1 (the first part).

Let us now analyze the design of output part (4.10b) of these four
dynamic output feedback compensators. Because the matrices C; = [T :
C'l' (i=1, 2) are nonsingular, the first two compensators can generate
arbitrary and ideal state feedback control K; = K;C; (i = 1, 2). This result
conforms with Conclusion 6.3 and Table 6.1. On the other hand, the
matrices C; = [T/ : C']' (i = 3, 4) have rank 6 and are singular. Hence only
constrained state feedback control K; = K;C; (i = 3, 4) can be implemented
by the last two compensators. This result again conforms to Conclusion 6.4
and Table 6.1 because the third plant system has rank(CB) = 1 < 2 = p and
the fourth plant system has a nonminimum-phase zero (2).

For the third and fourth plant systems, there exists no other general
and systematic design method which can fully use the design freedom to
achieve feedback system performance and robustness. However, Algorithms
5.3 and 6.1 have systematically and generally designed the dynamic part of
the dynamic output feedback compensator for these two plant systems as
follows.

Because rank (C;) = 6 <7 =n, (i =3, 4), we can select six out of the
seven rows of C; to form a new C; (i = 3, 4) so that Rank (C;) still equals 6.
Suppose we select the first three rows of matrix 7; and all three rows of
matrix C to form C; (i =3, 4). Then the new dynamic part of the
corresponding dynamic output feedback compensator would be (F;, T;, L)),
whichsis-formed:bysthe first-threesrowsof original (F;, 77, L;) (i =3, 4), and
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the state feedback control gain implemented by these two compensators is

=~ O
|
—
8]
(e
—_
|
[\S)

—_ O

8§ -2 0 4

K3 = ?3[73 : Cl]/ = K3

and

Ky =K4[T,: C

2 1 -1 -2 -1 1 2
4 2/5 —12/5 -2 —1/5 6/5 1
9 0 -6 -3 0 2 1

Il
e

respectively. These two state feedback controls are equivalent to a static
output feedback control with six independent outputs. Therefore, they are
not much weaker than the ideal state feedback control and are much
stronger than the ordinary static output feedback control, which corre-
sponds to only three outputs. For example, these two controls can
arbitrarily assign the eigenvalues of the corresponding feedback system
matrix 4 — BK;C; (i =3, 4) because 6 +p=6+2=28>7 =n [Kimura,
1975], while the ordinary static output feedback control cannot because
34p=34+2=5<T=n.

More important, all four compensators guarantee that the feedback
system poles be the union of {—1, —2, —3} and the eigenvalues of 4 —
BK; (i=1,...,4) (Theorem 4.1), and guarantee that the feedback system
loop transfer function equals —K;(s/ — 4)"'B(i =1,...,4) (Theorem 3.4).
This result certainly cannot be achieved systematically by other existing
design methods for the third and fourth plant systems, especially the fourth,
which is nonminimum-phase.
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Example 6.2 The Case When Eigenvalues of F are Complex

Conjugate
Let[A : }
cC : 0
[ 1.0048 —0.0068 —0.1704 —18.178 : 39.611]
=7.7779 0.8914 10.784 0 : 0
1 0 0 0 : 0
= 0 0 0 0 : 1
0 0 0 0
L0 0 0 0 |

This is the state space model of a combustion engine system [Liubakka,
1987]. Its four states are manifold pressure, engine rotation speed, manifold
pressure (previous rotation), and throttle position, respectively. Its control
input is the throttle position (next rotation) and its two output measure-
ments are manifold pressure and engine rotation speed, respectively.

Apply the operation of Steps 2 and 3 of Algorithm 5.2 ( j = 2), where
the operator matrix

0 0
0 0
—0.0093735  0.999956
—0.99996  —0.0093735

S oo =
S o~ O

is determined by the elements [—0.1704 —18.178] of matrix 4. The
resulting block-observable Hessenberg form system matrices are

[H’AH : H’B}
CH 0
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Design for Robustness Realization

1.0048 —0.0068 18.1788 0  : 396111
~7.7779 08914 —0.1011 10.7835 : 0
—0.00937 0 0 0o -1

= 1 0 0 0 : —0.0093735
0 0 0 0
L0 0 0 o |

Because this system does not have any stable transmission zeros, we
arbitrarily select matrix

P ]

with eigenvalues —1 +;. Substituting matrices H'AH and F into (5.13b) of
Step 1, Algorithm 5.3, we have

[D1:D2](12®H’AH[2] _F ®[OD

Ve
—0.05501 0 1 0 : —0.05501 0 0 0
—0.0005157 —0.092734 0 1 : —0.0005157 —0.092734 0 0
0.05501 0 0 0 : —0.05501 0 1 0
0.0005157  0.092734 0 0 : -—0.0005157 —0.092734 0 0
[ 18.1788 0 0 0
—0.1011 10.7835 0 0
1 0 1 0
0 1 0 1
X =0
0 0 : 18.1788 0
0 0 : —0.1011 10.7835
-1 0 1 0
. 0 -1 : 0 I
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Substituting [D;: Ds] in (6.2b) of Algorithm 6.1, we have

3179 2179
20029801 :  —0.02043
[—0.0093735 1 0 0] -0
¢ 2179 —3.179
0.02043 : —0.029801
DB DB =0

Thus the result of Step 2 of Algorithm 5.3 is

T— eD;| [0 —0.092734 —0.0093735 1
T leDy| T |0 —0.92734 0 0

This matrix corresponds to system matrix (H'AH, H'B, CH). Hence it must
be adjusted to correspond to the original system matrix (4, B, C) (see the
beginning of Sec. 5.2):

o, [0 —092734 1 0
T_TH_[O —0.92734 0 0}

Substituting this T into (5.16) of Step 3, Algorithm 5.3, we have

L— (T4 FT){Q} _ [1.721276 —0.082663]

0 0.721276  —0.26813

It can be verified that (F, T, L) satisfies (4.1) and (4.3), but the matrix
C =[T': " is singular. This is because the system has a nonminimum-
phase zero (0.4589). Nonetheless, matrix C has one more linearly
independent row than the original matrix C. Hence with the guaranteed
robustness realization [by (4.3)], the compensator F, T, L) of (4.10) realizes
a stronger state feedback control KCx (1) than K, Cx(t) of the ordinary static
output feedback control.

In addition, Example 7.3 of Chap. 7 provides a numerical example
about the multiple ecigenvalue case of Algorithm 5.3. Thus complete
eigenvalue cases have been shown by numerical examples in this book.

Copyright 2004 by Marcel DekKer, Inc. All Rights Reserved.



Example 6.3 A Case with Approximate Solution of (4.1) and
(4.3)

Let the system matrix be

x x 10 1 3

x x 01 1 2 1000
ABO=11y x 0 ol'] 2 6 ’[0100]

x x 00 -1 -2

€999

where “x’’s are arbitrary entries. Because this system has the same number
of inputs and outputs (m = p) and satisfies rank (CB) =p =2, it has
n—m=4—2 =2 transmission zeros. Because this system is in observable
canonical form, using the procedure of Examples 1.7, matrix N(s) of the
polynomial matrix fraction description of the corresponding transfer
function G(s) = D~!(s)N(s) can be directly derived as

vo-[17% %3]

Thus this system has two (= n — m) transmission zeros (—2 and 1) and is
nonminimum-phase.

Let us set F = diag {—2,—1}, where —2 matches the stable transmis-
sion zero of (4, B, C) and —1 is arbitrarily chosen. Solving (5.10b), we have

-2 0 1 0 -1 010
Dl_{ 0 -2 0 1} ad D=1 o
Substituting this result into (6.2a),
0 0
C1D1B261|:_3 —6:|:0
and
1 3
CzDzBZCQ[ 9 _4:| =0 (6.17)

imply that ¢; =[x 0] (x#0), while the exact solution of ¢, does not exist.
This is because the corresponding transmission zero (—2) of ¢; is matched
by:-the-eigenvalue-of 45 while-the transmission zero (1) corresponding to ¢; is
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not. This example shows that having n — m stable transmission zeros is a
necessary condition for a plant system with (m = p) to have exact solution
to (4.1), (4.3) and nonsingular C. This example also conforms with
Conclusion 6.1 (the second part).

To minimize ¢, DB of (6.17) in a least-square sense, we use (6.3) of
Algorithm 6.1 such that

¢ =u,=1[08174 0.576]

Here u, is the normalized right eigenvector of matrix [D,B][D,B]" and its
smallest eigenvalue a% = 0.13393. In other words, o, = 0.366 is the smallest
singular value of matrix D, B and u, is the second column of unitary matrix
U of the singular value decomposition of D,B. It can be verified that
|lea D2 B|| = 6, which is the least-square residual of (6.17) (see Example A.6).

The above result provides us with two possible feedback compensa-
tors, whose dynamic part (3.16a) will be, respectively,

(Fl, Tl) = (—2, [—201 : Cl])

and

. -2 0 —201 : C1
(F2’T2)—<[ 0 —1}’{—0.8174 ~0.576 : 0.8174 0.576D

Of these two possible compensators, the first is a dynamic output
feedback compensator (4.10) because it satisfies 7B = 0, while the second
does not satisfy 7B = 0 and hence is an observer (3.16) only. Therefore, the
first compensator guarantees that the feedback system loop transfer
function equals —K[T7: C") (sI — A)~' B for whatever K, while the second
compensator does not (for its corresponding freely designed K;) (Theorem
3.4), even though the least-square gain 7B of (6.17) is used in this observer.

On the other hand, the first compensator can implement only a
constrained state feedback K;[T|:C']' because Rank [T]:C']' =3 <4 =n,
even though arbitrary eigenvalues can still be assigned to the matrix
A —BK,[T{:C"]' because 3+p=3+2=5>4=n, while the second
compensator can implement arbitrary state feedback K,[T5:C']" because
the matrix [T%: C']’ is nonsingular.

We recall for nonminimum-phase plant systems, such as the one in this
example, that there is no other design method which can systematically and
analytically-derive-as:strongra-resultzas these two compensators.
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6.3 COMPLETE UNIFICATION OF TWO EXISTING BASIC
MODERN CONTROL SYSTEM STRUCTURES

Besides general robustness realization, the new design approach of this book
has another major theoretical significance. That is the complete unification
of two existing basic control structures of modern control theory. These two
basic structures are the exact LTR state observer feedback system and the
static output feedback system. State observer and static output feedback
have been the main control structures of modern control theory for years,
but no attempt has been made to unify these seemingly very different
structures.

The new control structure designed in this chapter—the dynamic
output feedback controller which can implement state/generalized state
feedback control, can completely unify the above two existing control
structures as its two extreme cases. This unification can be shown in Fig. 6.1,
and the properties of these three structures can be summarized in Table 6.2.

Table 6.2 shows clearly that the new control structure of this book
[structure (b)] completely unifies in all aspects the existing two basic control
structures of (a) and (c). The common feature which makes this unification
uniquely possible is the realization of state feedback control [Kx(7), K is a
constant] and its robustness properties (L(s) = —K(s/ — 4) "' B).

Table 6.2 shows that control structure (a) exercises the strongest
control but is least generally designed, while control structure (c) exercises
the weakest control but is general to all plant systems. The table also shows
that control structure (b) completely unifies these two extreme properties.

A direct consequence of this unification is that the design of the output
part of dynamic output feedback compensator K = KC is directly

) o1 YO u(f) ¥y
{ csray's P C(sl-A)'B
—Kx(f Cx(t
X( J'—_K.\'L x(1)
(b) (c)
Exact LTR state Dynamic output Static output
observer feedback feedback feedback

Figure 6.1 Three modern control structures capable of realizing state/
generalized state;feedbackscontrolzand-their robustness properties.
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Table 6.2 Three Control Systems of Modern Control Theory

Control structure (a) (b) (c)
Controller order r n—m n—-m>=r=0 0
Matrix C = [T": C'| [T":C [T':C C
Rank (C) = n n=r+m=m m
g=r+m
State feedback Arbitrary K (C Arbitrary to Severely
gain K = KC nonsingular) severely constrained
constrained K=K,C
K =KC
Dynamic matrix A— BK A— BKC A- BK,C
Loop transfer —K(sl-A)'B  —KC(sl—A)'B  —K,C(sl-A)"'B
function
Generality n — m stable At least one None

(conditions on transmission stable

plant system) zeros or transmission
minimum zeroorm>p
phase, rank
(CB) =p, and
m>=p

compatible with the existing state feedback design (if ¢ = n) and the existing
static output feedback design (if ¢ < n). This design will be described in
Chaps 8 and 9.

6.4 OBSERVER ORDER ADJUSTMENT TO TRADEOFF
BETWEEN PERFORMANCE AND ROBUSTNESS
[Tsui, 1999¢]

One of the main and unique features of the observers based on the result of
Algorithm 6.3, is that the observer order r is completely flexible. On the
contrary, the existing observer orders are fixed. For example, the state
observer orders are fixed to be either n or n — m, and the order of a static
output feedback controller is 0.

Also because of this unique feature, our observer compensator can
completely unify exact LTR state observer and static output feedback
control, as described clearly in Sec. 6.3.
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The reason behind this unique feature is that the dynamic part of our
observer compensator is completely decoupled. This is further enabled,
uniquely, by the Jordan form of matrix Fin (4.1) and in Algorithm 5.3, and
by the design concept that a nonsingular matrix C in (4.2) is unnecessary
(see Chap. 4).

Example 6.4

Example 6.1 (the third and the fourth compensators) and Example 6.3 (the
first compensator) all show that when matrix F'is in Jordan form and when a
nonsingular matrix C is no longer required, the compensator order can be
freely adjusted.

More specifically, the third and the fourth compensators of Example
6.1 have order r = 3 while n — m = 4, and the first compensator of Example
6.3 has order r = 1 while n —m = 2.

This section deals with the actual determination of this observer
compensator order r. Our determination is based on the following two basic
and clear understandings.

The first understanding is based on the formulation (4.2) of our
control K = KC, where C is formed by the rows of matrices C of
(1.1b) and T of (4.1) and (4.3). Equation (4.2) is a constraint on the
state feedback gain K (see Subsection 3.2.2). Therefore, the higher the
observer order r (which equals the row rank of matrix 7), the higher
the row rank (r+m) of matrix C, the less the constraint on K (see
Appendix A.l), and the more powerful the corresponding control
Kx(1).

The second understanding is based on Eq. (4.3) (TB = 0), which is the
key condition for realizing the loop transfer function/robustness properties
of our control. Because B is given, the smaller the row rank r of matrix 7,
the easier to satisfy (4.3) (see Appendix A.1).

In addition to these two simple and basic understandings, our observer
order determination is further based on the following two obvious system
design principles.

The first system design principle is that the system must be stable.
Therefore, based on the first of the above two basic understandings, the
order r has to be high enough so that the corresponding matrix 4 — BKC is
stabilizable.

Stabilization, which only requires all eigenvalues of matrix 4 — BKC
be in the stable region rather than in exact locations, is substantially easier
than arbitrary eigenvalue assignment of matrix 4 — BKC (see Subsection
8l Nowsbecause-rank (C)xp>sis generically sufficient for arbitrary
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cigenvalue assignment of 4 — BKC [Wang, 1996], this condition should be
sufficient for the stabilization of 4 — BKC. Therefore, we should have a high
enough observer order r such that

(r+m)xp>n or r>g—m (6.18)

This should be the lower bound of observer order r.

The second system design principle is that the effectiveness (especially
the robustness property) of control Kx(z) is totally lost if 7B #0. Therefore,
based on the second of the above two basic understandings, the observer
order r should be low enough so that 7B can be sufficiently minimized.

Based on Conclusion 6.1 and the second column of Table 6.2, if the
open-loop system (A, B, C) has either m > p or at least one stable
transmission zero, than 7B = 0 can be fully satisfied [in addition to (4.1)].
Then from the first of the above two basic understandings, we should have
the highest possible observer order r, say #, while keeping 7B =0
satisfied.

Definition 6.1

Let A maximal possible rank (CA[T’ : C')') — m where matrix T satisfies
(4.1) and (4.3).

From Conclusion 6.3 and its proof, ' equals the number of stable
transmission zeros of system (A4, B, C) if m < p.

What is the value of /' for the cases of m > p? It differs from system to
system, depends on parameters such as rank(CB) and the numbers of system
stable and unstable transmission zeros (even though such systems
generically do not have transmission zeros [Davison and Wang, 1974)),
and ranges between 0 and n — m. There is no simple and general formula for
¢ directly from the parameters of system (A4, B, C). Fortunately, Case B of
Algorithm 6.1 guarantees the simple and direct computation of //, as
convincingly argued by Conclusion 6.2.

There is another way to compute the value of # and it computes #/
before the computation of the solution of (4.1) and (4.3). This computation
is based on a special similarity transformation on the system (4, B, C)
called the “special coordinate basis (s.0.b.)” [Saberi et al., 1993]. In the
s.0.b., the system is decoupled into five parts with five dimensions such as
the number of system stable transmission zeros and the number of system
unstable transmission zeros, etc. The value of /' can be determined easily
fromypthesepfivesdimensionsypbecausegthe state observers of some of these
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decoupled system parts of s.0.b. satisfy automatically 7B = 0. However, it is
obvious and it is accepted that the computation of this s.0.b. itself is very
difficult and ill conditioned [Chu, 2000], even though numerically more
stable algorithm of computing this s.0.b. is presented in Chu [2000].

In addition to the ill condition of the computation of s.0.b., the
corresponding state observer of s.0.b. has order fixed at / and is not
adjustable at all. Then what if this # cannot satisfy (6.18) or (6.19) (if a
higher design requirement is imposed), or what if this ' is too high to be
realized? These problems cannot be even discussed based on the state
observers since the state observer order is fixed.

If ¥>r of (6.18), then (4.1), (4.3) and the stabilization of matrix
A — BKC are guaranteed. Because (4.1) implies that the feedback system
poles are composed of the eigenvalues of matrices F and 4 — BKC
(Theorem 4.1), and (4.3) implies an output feedback compensator [see
(4.10)], a solution to the strong stabilization problem is automatically
derived by our design. The strong stabilization problem is defined as
stabilizing the feedback system [say matrix 4 — BKC] by a stable output
feedback compensator [Youla et al., 1974 and Vidyasagar, 1985].

In practice a control system design that requires advanced control
theory usually deserve both high performance and robustness, in addition to
stability only. Therefore the control KCx(f) should be able to assign
arbitrary eigenvalues and at least some eigenvectors. Fortunately, such
design algorithm is presented in Subsection 8.1.3, and is executable if
rank(C) + p > n. Therefore in such designs, it is required that at least

(r+m)+p>n or  r>n—p-m (6.19)

is satisfied.

It is proven mainly by the exercises of Chap. 4, and partially by
Exercises 8.6 and 8.7, that (6.19) can be satisfied by most open-loop systems,
and that (6.18) can be satisfied by a great majority of the open-loop systems.

Comparing the static output feedback controls where r =0 (see
Table 6.2 and Subsection 3.2.2), (6.18) and (6.19) cannot be satisfied as soon
as mx p<n and m + p<n, respectively (see for Example 6.3 and Exercises
6.7 and 8.6).

In case the desired value of r of (6.19) or even (6.18) is higher than the
value of // (which guarantees TB = 0), the remaining r — ' rows of T [or
their corresponding ¢; vectors of (6.1)] should be computed to make the
corresponding matrix CA[T” : C']' full row rank instead of making TB (or
¢;D;B,i =71 + 1 to r) = 0. Nonetheless, these r — ¥ rows of T should still be
selectedsout-ofthe st ows0fZ-and should still be computed, so that
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the product TB (or ||¢;D;B|,i =+ +1tor) has the smallest possible
magnitude.

EXERCISES

6.1 Verify the computation of Algorithm 6.1 to satisfy (4.3) for the four
systems of Example 6.1.

6.2 Verify the computation of Algorithm 6.2 to satisfy (4.3) for Example
6.2.

6.3 Verify the computation of Algorithm 6.3 to satisfy (4.3) for Example
6.3.

6.4 Suppose matrices 4, C, and D; (and 4;,i = 1,...,4) are all the same as
that of Example 7.3. Let the matrix B be generally given. Repeat
Algorithm 6.1.

(a) Letc¢; =[1,c1, ). Compute ¢; such that ¢; DB =0.

Answer :
[e1 @]=-[-2 0 -1 1 0 0 1]Bx

1 =1 -1 110 07\
B
0 0 0 0 0 1 0
(b) Let ¢, = [e,1,¢;]. Compute ¢; such that ¢;D,B = 0.

Answer :
[e1 aa]=—-][-1 =2 -1 1 1 0 0]Bx

-1 =1 000 0 17\
B
1 1 -1 0 0 1 0
(c) Let ¢ = [c1, 2, 1]. Compute ¢3 such that ¢;D3B = 0.

Answer :
[e1 @]=-[2 2 =2 0 0 1| 0]Bx

2 -2 1 =1 0 0 1] )‘
B
3 3 1 1 100
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(d) Let ey =][1,c1,c2]. Compute ¢4 such that ¢4D4B = 0.

Answer :
[6‘1 C2]=—[6 1 -2 2 0 0 1]B><

([3 0—11100})‘1
B
1 -1 1.0 0 1 0

Of course the ¢; vectors do not need to (and some times cannot) be
fixed at the above forms.
6.5 Change matrix B of the system of Example 6.1 to

111 : -3 -1 -1 : 2V
000 : 1 2 1 : =2

so that Rank(CB)=1=p—1 and the system has one unstable
transmission zero 1. What is the value ' of this system?
Answer: ¥ =2=n—m —2.

6.6 Change matrix B of the system of Example 6.1 to

111 : -3 -1 -1 : 27
oo0oo0: 1 0 0 : =2

so that Rank(CB)=1=p—1 and the system has two unstable
transmission zeros 1 and 2. What is the value // of this system?
Answer: ' =1=n—m— 3.

6.7 Repeat Example 6.3 for a similar system

x x 1 0 1

X 0 1 1 3 1 0 0 O
(A7B’C): b b

X 0 0 3 6 01 0 0

x x 0 0 —1 -3

Instead of having —2 and 1 as transmission zeros of Example 6.3, this
new system has —3 and 1 as transmission zeros.

6.8 In single-input and single-output systems G(s) = D~!(s)N(s), the
condition rank(CB)=p (or CB#0) implies N(s) has order
—m=—vlznThussthe-SISOssystems have generically n — 1 zeros
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[Davison and Wang, 1974]. Using the result of Example 1.7 and
Exercises 1.3 to 1.6, repeat the above analysis on how the condition
rank(CB) = p will imply to the number of MIMO system transmission

Z€ros.
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7

Observer Design for Minimized Order

As stated at the beginning of Chap. 6, Step 2 of Algorithm 5.3 revealed the
remaining freedom of (4.1). The first application of using this freedom is to
realize the robustness properties of state feedback control, and is presented
in Chap. 6. The second application of using this freedom is to minimize the
observer order, and is presented in this chapter. The objectives of these two
applications are very different.

Like the failure to realize the robustness properties of state feedback
control, high observer order has also been a major drawback that has
limited the practical application of state space control theory. Lower order
observers not only are much easier to realize, but also have generally much
smoother-corresponding-tesponse=-kike in Chap. 6, this chapter will
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demonstrate that with the full use of the remaining freedom of (4.1), this
drawback can be effectively overcome.

However, unlike the design of Chap. 6 which determines only the
dynamic part of the observer and which results in an output feedback
compensator (4.10), the design of this chapter will completely determine the
whole observer which cannot qualify as an output feedback compensator.

The design of this chapter is also based on the unique feature of the
solution of (4.1) of Algorithm 5.3, that the rows of this solution (F, T, L)
are completely decoupled. Thus the number of rows of this solution can be
determined freely. From the observer definition of (3.16), this number
equals the observer order r (see also Sec. 6.4 for the determination of r, but
for a purpose totally different from a minimized r).

Section 7.1 describes the design formulation of this problem, which is
claimed in Sec. 7.3 to be far simpler and the simplest possible general design
formulation of this problem.

Section 7.2 presents the simple and systematic design algorithm
(Algorithm 7.1) based on this formulation, and analyzes the general upper
and lower bounds of r which is computed by this algorithm.

Section 7.3 proves that the general observer order bounds of Sec. 7.2
are far lower than the existing ones, are the lowest possible general bounds,
and are lower enough to be practically significant even at the computer age.
Several examples are presented to demonstrate this significance and
Algorithm 7.1.

7.1 DESIGN FORMULATION [Tsui, 1985, 1993a]

As described in Example 4.3, minimal order observer design fully uses the
remaining freedom of (4.1) to satisfy (4.2) [but not (4.3)] with arbitrarily
given K, with arbitrarily given observer poles for guaranteed rate of
observation convergence, and with a minimal value of r.

As reviewed in Example 4.3, minimal order observer design has been
attempted for years since 1970 [Gopinath, 1971; Fortmann and Williamson,
1972; Kaileth, 1980, p. 527; Gupta et al., 1981; O’Reilly, 1983; Chen, 1984,
p- 371; Van Dooren, 1984; Fowell et al., 1986]. But none has used the
solution of (4.1) of Algorithm 5.3. This solution is uniquely decoupled and
shows completely and explicitly the remaining freedom of (4.1) (see Sec. 5.2
and the beginning of Chaps 6 and 7). Thus only based on this solution of
(4.1), can the minimal order observer design problem be simplified to the
solving of (4.2) only and therefore really systematically.

As reviewed in Subsection 3.2.3, only Eq. (4.2) reveals the difference
between different types of observers, such as the state observers of Examples
dolpanded2pvsmthesfunctiongobservers of Definition 4.1, and such as the
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strictly proper type (K, = 0) vs. the proper type (K, # 0). The following
design formulation (7.1c) and the corresponding design algorithm (Algo-
rithm 7.1) are for proper type observers. However they can be very easily
adapted to solve the strictly proper type observer problems.

Based on the block-observable Hessenberg form of (4, C), Eq. (4.2),
like (4.1), can be partitioned into its left m columns:

K[’g] — (K, : K] [g] {’ﬂ _ KZTH"} LK, (7.1a)

and its right n — m columns:

K[ 0 ]AK:KZT{ 0 ]AKZT (7.1b)

Infm = Infm =

Because rank (C;) = m and K, is completely free in (7.1a), only (7.1b) need
to be satisfied.

To simplify the problem, we assume that all observer poles are distinct
and real. Substituting the result of (6.1a) of Algorithm 5.3 (Step 1) into
(7.1b), we have

(V] D]
(7.1¢c)

m ... m n—m

where K, T, D, are the right n — m columns of K, T, D; (i = 1,...,r) of (4.2)
and (6.1a), respectively, and r equals the number of rows of matrix 7 or the
corresponding minimal observer order.

The unknown solution of (7.1c) is Kz and ¢; (i=1,...,r), where
parameter K represents the design freedom of observer output part while
¢; (i=1,...,r) represents the remaining freedom of observer dynamic part.
The parameters ¢; can also be considered the remaining freedom of (4.1), or
the freedom of observer eigenvector assignment because F'is in Jordan form.
Hence the observer design freedom is fully used in (7.1c).

In addition, the given row blocks D; of (7.1c) are completely decoupled
for all i because they are basis vector matrices of observer eigenvectors.
Hence unlike any other existing minimal order observer design formulations,
(7=le)sisstruly-very-similar-to-assetzof dincar equations.
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As a result, for the first time, (7.1c) can be solved systematically by
matrix triangularization operations from the right side of the given matrix of
(7.1c), and by back substitution (see Appendix A, Sec. A.2).

7.2 DESIGN ALGORITHM AND ITS ANALYSIS

The following design algorithm solves (7.1c) by matrix triangularization
operations from the right side of the given equation of (7.1c), and by back
substitution operation following each triangularization (see Sec. A.2).

Algorithm 7.1 Design of Minimal Order Observers [Tsui, 1985]

Step 1: Triangularize the following matrix S until it becomes

D,
SHA| - |H
N DI‘[—I‘H
K
. 0 )
0 (nm—1m+1
X i to rim rows r1m rows
X
— D, . H tm (7.2)
DI1—I71H }m
X
X ... X 0 ... 0 | <theg-throw 1,
L X |
S

>

Step 2:  The form of S of (7.2) indicates that the ¢;-th row of K is a
linear coplbination of the rows of D; (i=1,...,r), or
Lp=2¢iDiH(i=slgemsyr1). Compute ¢; by back substitu-
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tion. Also set the ¢;-th row of matrix Kz as [1..1 : 0...0] with
rp “17s.
Step 3: Triangularize the following matrix S; until it becomes:

ClDlH

crlDrlH

S1H{ A | Dy H | Hy

KH
- x 0 )
0 }rl—}—(rz—l)m—{-l
X * to 1| + rom rows
X
- D111 HH, tm
. (7.3)
D, ,HH, tm
X
X ... X : 0 ... O [<«the go-th row 1,
I X 1 (@2 # a1)
AS|

Step 4:  The form of S| of (7.3) indicates that the ¢»-th row of K is a
linear combination of the rows ¢;D; (i =1,...,r;) and the
rowsof D; (i=r +1,...,r + 1), or

rl rl4r2
L= ky(e;DiHHy)+ Y e(DiHH))

i=1 i=rl+1
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Compute [kap, ..., ko, 1]Aky and ¢; (i =ry +1,...,r1 +r2), and then set the
¢>-th row of K7 as

[k : 1 ... 1 : 0 ... 0] (7.4a)

r r

Steps 3 and 4 are repeated until each of the p rows of K is expressed as
a linear combination of the rows of D; (i = 1,---,r; + .. + r, A1), where r is
the observer order. -

Finally, parameters 7 and L are determined by Step 3 of Algorithm
5.3, and parameter K, is determined by (7.1a).

Without loss of generality, we assume ¢; =i (i = 1,...,p), then the
corresponding
[1...1 0 : el 0
k> 1.1 0 o 0
K; = k; S DU BT 0
(7.4b)
i k, 1. 1]
r r r3 e p

It is obvious that observer order is tried and increased one by one
starting from 0, in Algorithm 7.1. At any stage of this algorithm, if the
calculated ¢; = 0, then the corresponding D; will be redeployed at the lower
part of matrix S to express other rows of K. Therefore it is also obvious that
all remaining freedom of (4.1) (¢;,i = 1,...,r) is fully used.

Based on Conclusion 5.2 and the general assumption that

VISV =V, and that FIZ1= - 21 (7.5)

it is proven that [Tsui, 1986b] in Algorithm 7.1

i=1,....p (7.6a)

E= () SO Do+ (v, — 1) (7.6b)
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It is also proven that [Tsui, 1986b] in this algorithm

r<n—m

(7.7)

If parameter K, is predetermined to be 0, then Eq. (7.1) becomes

C| D,

K=K;T =K, :
C; D,

m m n

(7.8)

Because the only difference between (7.8) and (7.1c) is that the former
has m additional columns, Algorithm 7.1 can be used directly to design this
type of minimal order observers, and (7.6a,b) and (7.7) can be replaced by

i< i=1,...,p

r:(r1+...+rp)<\)l+...+vp

)

and

r<n

(7.9a)
(7.9b)

(7.10)

respectively. Now we have the complete formula for the general lower and

upper bounds of orders of minimal order observers.

Table 7.1 shows that the order of a function observer which can
implement arbitrary state feedback control varies between its lower and
upper bounds. Unlike state observer orders, the actual value r of this order
depends on the actual values of K and T (Dy’s) in either (7.8) (if K, = 0) or

(7.1) (if K, #0).

Table 7.1 Lower and Upper Bounds for Orders of Minimal Order
Observers with Arbitrarily Given Poles

Function observers

Stateo observers (p<n,K arbitrary,
Observer type p=nK=1 and vi>= - >=vp)
K, =0 r=n 1<r<min{n,vi+---+vp}
K, #0 r=n-m o<r<min{n—m,(vi = 1) +---+ (v, — 1)}
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7.3 EXAMPLES AND SIGNIFICANCE OF THIS DESIGN [Tsui,
1998al

Example 7.1
In the single-output case (m = 1), the basis vector matrices D; of Algorithm

5.3 become row vectors t;(i = 1,...,r). Hence the corresponding (7.8) and
(7.1) become

t t
y 0
K=Ky, and K=K,
1!17771
t, t,
n n—m

respectively. Thus the upper bound of function observer order of this case is
n and n — m, respectively. The lower bound remains 1 and 0 respectively,
because K cannot be 0 while K can.

The single output (SO) system is a special case of the multiple output
(MO, m>1) system in the sense of m = 1. Notice that for such systems
vi = n, which makes the two terms of the upper bounds of r of Table 7.1 well
unified with each other when m = 1. Example 7.1 shows that the observer
order bounds of this special case is well unified by the bounds of Table 7.1.

The single input (SI) system is also a special case of the multiple input
(MI,p>=1) system in the sense of p = 1. In this special case K is a row
vector. The upper bound of ris v; and v; — 1 for the two types of observers
respectively because of (7.9a) and (7.6a), respectively. Notice that
vi = n if m = 1. This makes the two terms of upper bounds of r unified
with each other for m = p = 1. As p increases from 1 [or the problem is
changed to generate more signals of Kx(t)], the upper bound of r should
increase to vi +---4v, or (vy —1)+---+ (v, — 1) but should not exceed
the most difficult state observer case n or n — m, respectively, for the two
types of observers. Because the observability indices satisfy v; + -+ v, =
n in Definition 5.1, the two terms of the upper bounds of r are also perfectly
unified as p is increased up to m. This unification is not achieved by other
existing general upper bounds of r such as pv; or p(v; — 1) [Chen, 1984]
because the v;’s may not be all the same.

For all SISO or MIMO cases, the lower bound of r is still 1 and 0 in
(7.8) and (7.1c) respectively, also because K of (7.8) cannot be 0 while K of
(7.1¢) can. The first case implies that K is a linear combination of the rows of
Dy(see-Part:(c)rof Example:7:3-and-Exercise 7.1 or see Part (d) of Exercise
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7.1 for variation). The second case implies that the corresponding K is a
linear combination of the rows of matrix C.

To summarize, the lower and upper bounds of minimal order observer
order of Table 7.1 are perfectly and uniquely unified from SISO cases to the
MIMO cases.

The derivation of (7.8) to (7.10) for the strictly proper observers (K, =
0) and the derivation of (7.1) and (7.5) to (7.7) for the proper type observers
(K, #0) also show that the bounds of r of Table 7.1 are also perfectly unified
for these two types of observers.

For the state observer case when rank (K = 7) = maximum 7, the
upper bounds of r should reach the ultimate high levels n and n — m for the
two types of observers, respectively. For K = I, the matrix 7 of (7.8) and the
matrix [T” : C']’ of (7.1) should be square and nonsingular for the two types
of observers. Thus the number of rows of T (r) should be n and n — m for the
two types of observers, respectively. This is shown in Table 7.1. Thus
Table 7.1 also unifies the state observer case and function observer case
perfectly.

From the perfect unification of SISO and MIMO systems, the perfect
unification of strictly proper and proper type observers, and the perfect
unification of state and function observers, all bounds of observer order of
Table 7.1 should be the lowest possible. Any other bound that is lower than
any of these bounds of Table 7.1 cannot be general because it cannot unify
the special cases.

Although the upper bounds of minimal function observer order is not
as simple as that of the state observer order in Table 7.1, it often offers
substantial order reduction in practice. The lower bounds (1 and 0) of r are
the lowest possible and can be achieved by Algorithm 7.1 systematically
whenever it applies (see Example 7.3 and Exercise 7.1). However, it is the
upper bound that guarantees the significant order reduction from the state
observer orders.

Because the observability indices satisfy vi + - - - 4+ v,,, = n in Definition
5.1, the upper bound of r of Table 7.1 is lower than the state observer order
whenever m > p. In addition, this upper bound can be significantly lower
than the state observer order in the situation that p < m < n and that the v;’s
are evenly valued. This situation is indeed common in practice because it is
generally much easier to add measurements (or m) to a system than to add
controls (of p) to a system.

Example 7.2

In a circuit system with 100 capacitors, 10 current or voltage meters, and 2
controlled-currentsorsvoltagessourcesy; » = 100,m = 10 and p = 2. Given
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that vy =---=v;p =10 (v +---+ vjp = 100 = n), the function observer
order of Algorithm 7.1 will not exceed v;+v;, =20 and
(vi = 1) + (v2 — 1) = 18, respectively (see Table 7.1 and Exercise 7.3).

This is significantly lower than the state observer order. In addition, it
is possible that the function observer order can be systematically designed to
be even lower than its upper bound of 20 or 18. The improvement from a
hundredth-order compensator to a twentieth-order one can hardly be
discounted, even by today’s computer numerical computation capability.

The development of computer numerical computation capability
should only be a challenge, instead of a reason of abandonment, for such
research tasks as minimal order observer design. For example, the
development of high-speed computers has now made possible the digital
realization of a twentieth-order compensator of Example 7.2. In other
words, the significance of Example 7.2 is feasible because of the computer
development. It should be noted that the result of Table 7.1 is analytical and
general. Hence the 100-to-20-order reduction of Example 7.2 can easily be a
1000-to-200-order reduction (assuming » = 1000 and v; = --- = v;9 = 100;
other parameters of Example 7.2 remain unchanged).

In addition, the unsuccessful past attempts of developing a simple,
general, and systematic minimal order observer design algorithm should
only be a challenge, instead of a reason of abandonment, for developing
one.

Example 7.3 [Tsui, 1985]

Let the block-observable Hessenberg form system matrices be

-1 0 0 : 1 0 0 : 0
2 0 1 : —1 1 0 : 0
0 3 0 : 0 1 1 : 0
A= 0 0 0 -3 0 1
0 0 0 0 1 -1
1 0 0 0 0 -1 0
). 1 0 0 1 0 -2 |
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and

1 0 0
C= 1 1 0
-1 0 0

From Definition 5.1, v =3,v, =2,v3 = 2. Let us design three minimal
order observers for the following three state feedbacks:

- o O
S O O
(=R )
S O O

3 -2 =2 1 21 0

K, =
2 0 -1 1 1 0 0
2 0 2 1 0 1 1

K, =
-3 -3 =2 1 20 0

and

From Table 7.1, the observer order cannot exceed (vi — 1) + (v, — 1) = 3.
But let us first set the n — m = 7 — 3 = 4 possible eigenvalues of matrix F as
{1, 22, A3, a} = {-1, =2, =3, —1}.

In Step 1 of Algorithm 5.3 we compute the basis vector matrices
D; (i=1,2,3) from (5.10b) and D, from (5.15d) (based on Dy):

2 0o -1 1 0o o0 : 1
1 -1 —1 : 1 1 : 0

0 0 0 0 0 1 =: 0

-1 -1 0 0 0 1

-1 =2 -1 1 1 0 =: 0

D, 1 1 -1 0 0 1 : 0
Ds 2 2 I =1 0 0 1
-3 -3 -1 11 0

2 2 2 0 1 0

1

0

0




We will apply Algorithm 7.1 to each of the three different K’s. For simplicity
of computation, we use elementary matrix operation (H) instead of
orthonormal matrix operation (H) to triangularize the matrix of this
example.

For K;
Step 1:
B
1 00 -1
o101
SH=1Ds110 0 1 o
Lloo o 1
L Ki
T 10 0 0
1 0 0
0 0 1 0
0 0 o 1 (7.11)
1 1 0 0
0 0 1 0
= -1 o 0 2
1 1 0 0
0 0 1 0
20 0 -1
1 1 0 0
0 0 1 0
1 2 1
11 0 0

S eq =21,

Step2: r1=1,c1=[0 1 0],01D1H=11=[1 1 0 O]
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Step 3:

T 11 0 07
00 01
11 00
00 1 0|71 -1 00
S1H1:—10 0 2/l0 100
11 0o0||l0 010
00 10[/l0 001
12 11
L 11 0 0]
10 0 07
0 0 0 1
1 0 0 0
0 0 1 0
11 0 2
1 1 1|«
L x X X x|

Step4: r,=2,c,=[-1 0 1],es=[1 0 0], andk, =2, so that
1, = ky(c; D1 HH,) + ¢2(D,HH, ) + ¢3(DsHH,)

Finally, the observer for K is (r =r; +r, = 3), and

-1 0 0
F=| 0 =2 0
0 0 -3
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For K,

Step 1:

Step 2:

and

ClDl 1 —1 -1 1 1 0 0
T=|euD|=| 2 2 -1 0 01 -1
3 Ds -2 2 1 -1 00 1
From (7.4a),
ke 1 1] 2 211
KZ_[I :00]_[1 00]
From (5.10a) and (7.1a),
s 0 —4 =2
L:(TA—FT)[(;]Cl‘Iz 7 0 0
-5 =2 1
and
e Ll [1 00
K, = (K KZT)[O]CI _[0 X 0]

The result is similar to that of K in (7.11), except the
part

1 0 1 0]<—q1=1,11

K2H:[1 2 0 1

rp=1,e;=[1 0 1]sothate;(DH)=1,.
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Step 3:

10 1 07
00 0 1

11 0 0lft 0 -1 0

00 1 ollo1 0 o0

S = 00 10

00 01
10 10
12 0 1]
10 0 0 -
0o 0 0 1
11 -1 0
o o 10
X X X X

L2 -1 1 Loy,

Step4: rm=1,ca=[1 2 1], and k, = —1 such that

1, = ky(e; Dy HH,) + ¢y (D, HH))

Finally, the minimal order observer for K; is (r = r; + 1, = 2), and

[—1 o] [chl} { 2 0 -1 1 0 1 1
F: T: =
02D2 —

2 -4 -3 2 2 11
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and
L] .- 1 0 1
K},(KKZT)[(;]Cll[O | 0}

For K5

Because the first row of K3 is already a linear combination of rows of C, we
let r1 = 0 and let the linear combination coefficients be k;. Then, because the
second row of K; equals the second row of K;, we have the following
minimal order observer for K3 : (r=r1+r =0+ (r; for K;)=1)

F =—1,T =the first r; (= 1) rows of T for K,
=[1 =1 =1 1 1 0 0]

S T R i

L=[0 —4 -2]

To summarize, the order of the three minimal order observers is 3, 2, and 1,
respectively, which is systematically and generally determined by Algorithm
7.1. All three orders do not exceed (v; — 1)+ (v — 1) =3, which is the
upper bound of Table 7.1.

The minimal order observer design problem has been studied using
classical control methods also. The most recent result can be found in Chen
[1984] and Zhang [1990]. Although for years the upper bound of minimal
order observer order from these methods has been min{n —m, p(v; — 1)}
[Chen, 1984], (sece Exercise 7.4), the classical control methods differ much
from Algorithm 7.1 in determining systematically and generally the lowest
possible observer order (see Example 7.3 and the argument between (7.1c)
and Algorithm 7.1). The difference appears at how systematically the
equation [such as (7.1¢c)] is being solved, at how the observer dynamic part is
decoupled, and at how fully the design freedom (such as the free parameters
¢;) is being used. It seems that the classical control methods cannot match
Algorithm 7.1 in the above three technical aspects.

The foremost theoretical significance of Algorithm 7.1 is the
simplification of the design problem into a frue set of linear equations
(7.1c) or (7.8) with fully usable freedom. The general and lowest possible
lower and upper bounds of minimal order observer order (Table 7.1) are
alsorderived simply-based-onsthisssetsof lincar equations. Thus it can be
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claimed with confidence that this set of linear equations is already the
simplest possible theoretical and general form of the minimal order observer
design problem [Tsui, 1993a]. From Example 4.3 and Algorithm 7.1, this
development is enabled solely by the development on the decoupled solution
of (4.1) (Algorithm 5.3). Other state space minimal order observer design
methods cannot reach this simple form because the result of Algorithm 5.3
has not been used [Van Dooren, 1984; Fowell et al., 1986].

The actual solving of this set of linear equations is technical.
Although Algorithm 7.1 is general and systematic, guarantees the upper
bound of observer order of Table 7.1 and tries the observer order one
by one (starting from 0), it still has room for improvement. This
algorithm operates on the D; matrices in the sequence of i =1,2,..., but
does not try different sequences among these matrices, which may offer
additional observer order reduction. For example, if operating in the
sequence of (Dy, Dy, D3), Algorithm 7.1 can detect that K is linearly
dependent on the rows of D and D, (r =2), but it is still possible that
operating on a different sequence of (D3, D,, D) the Algorithm 7.1 can
detect that K is linearly dependent on the rows of D3 only (r=1) (see
Exercise 7.1, Part (d)).

In the literature, there are other reports of minimizing function
observer order by observer pole selection [Fortmann and Williamson, 1972;
Whistle, 1985]. However, these design methods are much more complicated,
while the additional observer order reduction offered by these methods is
not generally significant.

Finally, it should be emphasized again that the minimal order observer
design (Algorithm 7.1) uses up completely the remaining design freedom of
(4.1) (or of the observer) and therefore cannot take care of the robustness of
the corresponding observer feedback system [such as (4.3)]. Hence this
design is useful only for the situation in which the plant system model and
measurements are accurate—and continue to be accurate—and that
disturbance and failure are relatively free. In other words, the minimal
order observer should be used when only performance (but not robustness)
is required.

Although minimal order observer and dynamic output feedback
compensator (capable of implementing state feedback control) differ from
each other in design priority, both their designs are part of Step 2 of
Algorithm 5.3 and both are in the similar form of sets of linear equations.
Also, they both are successful and actual attempts of the basic observer
design concept—implementing state feedback control directly without
explicit information of system states. In addition, both order reduction
(which is part of performance) and robustness are important system
properties;zevensthoughsthesemphasissof this book is more on robustness
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properties. Therefore, both results are useful and both may be used in some
situations.

EXERCISES
7.1 Repeat Example 7.3 for a modified system of Example 6.1:

- o O

0 00
:0 00
0 00

oS o O

1 0
Let C= |2 1
3 4

and let matrices D; (i = 1,...,4) be the same as that of Example 6.1.
The system has parameters n=7m=3,p=2,vy =3, and

V) = V3 = 2.
I -1 0: 1 2 31
(a) K=
0 0 1:-4 3 -2 0
[ 3 2 31D,
Answer: r=3,T=|[-2 0 0]D>
[ 4 3 -=-2|D;

3 -2 -3:-3 2 3 3
=| -8 0 0: 4 0 0 -2
36 -9 6:—-12 3 -2 4

I 1 :0 19 —11 3
K; = Ky =
0 2 : 1 —-63 29 -5

1 0 0:1 2 3 1
o e |
0o -1 1:2 -4 -6 -4
{[ 3 2 3]D1]
Answer . r=2,T =
[-2 0 0]D;

[ 3 -2 -3:-3 23 3
-8 0 0:400—2

[ —10 3]
-17 -5
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© K_{n 7 1:0 00 0}

—6 2 —4:6 -2 4 —6

Answer: r=1,F=-1,T=1[3 1| =2]D,

o[ o c_[231
27 22 Y710 0 0

3 2 —3:—-1 -2/3 1 1/3
) K:[ / /]
10 6 1: 0 0 0 0

Answer: r=1,F=-3T=[1 -2 3]|Ds
=[9 6 -9:-3 -2 3 1]

we[2] w00

7.2 Let a system and its state feedback gain be given as

00 57Tt
paone ([ v
01 -2 1o

Design a minimal order observer according to Algorithm 7.1.

(a) Let K, =0 and observer poles = {—5.25, —2.44, —4}.
Answer: r=2<n.

(b) Let K, # 0, and observer poles = {—5/3,—-10/3}.
Answer: r=1<n—m.

7.3 In Example 7.2, let n = 1000, m = 100,p =2, v; = --- = vjop = 10, and
K, = 0. What are the state observer order and the upper bound of
minimal observer order of Table 7.1?

Answer:  n = 1000 and v; + v, = 20.

74 Letn=2lm=5p=2vi=9%vmn=---=vy;s=3,and K, #0.
What are the state observer order, the upper bound p(v; — 1) of the
existing minimal observer order, and the upper bound of our minimal
observer order of Table 7.1?
Answer:n—m-=16; p(yi.—1).= 16;v; + v, — 2 = 10.

Copyright 2004 by Marcel DekKer, Inc. All Rights Reserved.



8

Design of Feedback Control—
Eigenstructure Assignment

The new design approach of this book is divided into two major steps. The
first concerns the dynamic part of the observer/compensator and is covered
in Chap. 6 (for robustness realization). The second step, which is covered by
Chaps 8 and 9, deals with the design of the output part of the compensator,
or the design of the generalized state feedback control KCx(¢) with a given
C. This design also fully determines the feedback system loop transfer
function because (4.3) is already guaranteed.

Among the existing design results of this control, the eigenvalue and
eigenvector assignment (called ‘‘eigenstructure assignment’) and linear
quadratic optimal control are perhaps most commonly known, and are
capable-of-considering-effectively-both performance and robustness. In
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particular, according to the analysis of Chap. 2, the eigenvalues and
eigenvectors can determine system performance and robustness far more
directly and explicitly than other indicators. Hence their assignment should
improve feedback system performance and robustness distinctly effectively.

In this book, eigenstructure assignment design methods and linear
quadratic optimal control design methods are introduced in Chaps 8 and 9,
respectively.

The design of the generalized state feedback control KCx(t) is based
on the single overall feedback system matrix 4 — BKC. Therefore if the
design of Chap. 6 is based mainly on the understanding of feedback systems
of Chaps 3 and 4, then the design of Chaps 8 and 9 is based mainly on the
analysis of the single overall system of Chap. 2.

According to Table 6.2, the generalized state feedback control KCx (1)
unifies the arbitrary state feedback control (or state feedback control) Kx ()
(if rank (C) = n) and static output feedback control (if rank (C = C) = m).
Both Chaps 8 and 9 present the design methods in these two categories. The
arbitrary state feedback control, which is a special case of the generalized
state feedback control in the sense of C = I, is presented first.

8.1 SELECTION AND PLACEMENT OF FEEDBACK SYSTEM
POLES

8.1.1 Eigenvalue (Pole) Selection

Although system poles most directly determine system performance, there
are no general, explicit and optimal rules for feedback system pole selection.
Furthermore, there is no real optimal pole selection without trial and error.
This is because plant systems are usually very different and complex, and
also because the performance and robustness design requirements are
contradictory to each other.

Nonetheless, there are still some basic and general understandings
about the relationship between the system poles and the system performance
and robustness. The following six general rules of pole selection are guided
by these basic understandings (see Truxal, 1955 and Conclusion 2.2).

(a) The more negative the real part of the poles, the faster the speed
with which the system reaches its steady state.

(b) In regulator problems, it is often required that the zero frequency
response of the control system 7'(s = 0) be a finite constant. For
example, if the unit-step response of a single-input and single-
output system y(f) is required to approach 1 at steady state
(t—ee)suthenyy (t—00)=ws¥ (s—0) = sT(s—0)/s = T(s—0) = 1.
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This implies that N(s =0) = D(s = 0) in T(s) = N(s)/D(s). It is
well known that N(s = 0) equals the product of zeros of T'(s) and
is invariant under state feedback control [Patel, 1978]. Therefore
the relation N(s=0)= D(s=0) imposes a constraint on
D(s =0), which equals the product of the poles of feedback
system T'(s).

(c) From the results of root locus, the further away the feedback
system poles from the loop transfer function poles, the higher the
loop gain (or feedback control gain) required to place these
feedback system poles. The severe disadvantages of high feedback
control gain are listed in Subsection 3.1.2.

If rule (a) is concerned mainly with system performance,
then rules (b) and (c) are concerned mainly with robustness, and
are constraints on rule (a).

(d) If the eigenvalues of a matrix differ too much in magnitude, then
the difference between the largest and the smallest singular values
of that matrix will also differ too much. This implies the bad
condition and the bad robustness of the eigenvalues, of that
matrix.

(e) Multiple eigenvalues can cause defective eigenvectors (5.15d),
which are very sensitive to matrix parameter variation (see Golub
and Wilkinson, 1976b) and which generally result in rough
responses (see Example 2.1 and Fig. 2.1). Therefore multiple
poles, even clustered poles, should generally be avoided.

(f) For some optimal control systems in the sense of minimal
“Integral of time multiplied by absolute error (ITAE)” [Graham
and Lathrop, 1953]:

’:A () — 1

or in the sense of minimal “Integral of quadratic error (ISE)”
[Chang, 1961]:

J:/mmwm—n%wwﬁw, g
JO

the feedback system poles are required to have similar magnitude
and evenly distributed phase angles between +90° and —90°. This
result conforms with rules (d) and (e).
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These six rules are concerned more with the effectiveness and
limitations of practical analog control systems. In contrast, the selection
of feedback compensator poles (see the beginning of Sec. 5.2) are more
specifically and explicitly guided. The feedback compensators are usually
digital and can therefore be made ideal and precise, while the analog systems
cannot be made ideal and precise.

To summarize, the pole selection rules are neither exhaustive nor
generally optimal. This should be a true and reasonable reflection of the
reality of practical engineering systems, and should impose a challenge to
control engineers.

8.1.2 Eigenvalue Assignment by State Feedback Control

The eigenvalue assignment design methods are presented in this subsection
and in Subsection 8.1.3, for arbitrary state feedback control Kx(¢) and
generalized state feedback control KCx(t), respectively. These design
methods have the distinct property that the corresponding eigenvectors
are expressed in terms of their corresponding basis vectors, and can
therefore be assigned by really systematic and effective numerical methods.
These eigenvector assignment design methods will be presented in Sec. 8.2.

Let A be the Jordan form matrix that is formed by the selected
eigenvalues of Subsection 8.1.1. Then the eigenstructure assignment
problem can be formulated as (1.10):

(4 — BK)V = VA (8.1a)
or
AV — VA = BK™ (K™= KV) (8.1b)

Let matrix F of Eq. (4.1) be the same Jordan form matrix (in transpose) as
A, and be set to have dimension n, then this equation

TA—-FT =LC

becomes the dual of (8.1b). In other words, we can take the transpose of
both sides of (8.1b) and then consider the resulting 4’, B, V', and K ™' as the
matrices 4, C, T, and L of Eq. (4.1), respectively.

Therefore, we can use the dual version of Algorithm 5.3 to compute
directly the solution (¥, K™) of (8.1b). Incidentally, Algorithm 5.3 and its
dual version were published formally in the same year in Tsui [1985] and
Kautsky et al. [1985], respectively.
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The only difference between these two design computations is that
after K~ is computed from (8.1b), it must be adjusted to K = K"V ~!
because only matrix K corresponds to the original feedback dynamic matrix
A — BK. This adjustment is unnecessary in observer design because the
observer dynamic matrix in (3.16) is matrix F instead of matrix 4 — LC.

The dual version of Algorithm 5.3 is introduced in the following with
some simplifications.

Let the A; be an n;-dimensional Jordan block of A.

Let

Vi 4 [V,'1| e |Vini] and K,‘ 4 [k,'1| e |kini]

be nxn; and pxn; dimensional, and be the part of matrices V and K~
corresponding to A; in (8.1b), respectively.
Then (8.1b) can be partitioned as

AV,‘—V,‘A[:BK,', i:l,...,r (82)

where r is the number of Jordan blocks in A and ny +--- +n, = n.
Using the Kronecker product operator ®, Eq. (8.2) can be rewritten
as

[]m'®A —A,®]|— m'@B]VVl':O7 = 17...,}’ (833)
where

wi =V ooV K K 1 (8.3b)

ini*

For example, when n; = 1, (8.3) becomes

[A—M;—B}[]V({] =0 (8.4)
Because the matrix of (8.3a) has dimension n;n x n;(n + p) [see (5.13c)], and
because controllability criterion implies that all rows of this matrix are
linearly independent (see Definition 1.2), the vector w; of (8.3) has n; xp
basis vectors and can be set as an arbitrary linear combination of these basis
vectors. Naturally, the determination of this linear combination constitutes
the assignment of eigenvectors V; = [vi:...: Vini].

For example, when n; = 1, the matrix of (8.3) or (8.4) has dimension
n<s(nEp)eeHenceseigenvectormvimof; (8.4) can be an arbitrary linear
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combination of its p corresponding basis vectors d; (j = 1,...,p) which also
satisfy (8.4):

VvV, = [d,‘]i L d,‘p]C,‘ é Dic; (85)

where ¢; is a p-dimensional free column vector.

The vector k; of (8.4) will be the same linear combination (coefficient
vector is ¢;) of its own corresponding basis vectors.

If p = 1 (single-input case) and n; = 1, then the matrix of (8.3) or (8.4)
has dimension nx (n+ 1). Hence the solution v; and k; is unique (c; is a
scalar). This implies that in single-input case, there is no eigenvector
assignment freedom, and the eigenvalues alone can uniquely determine the
feedback system dynamic matrix.

Equation (8.5) is a uniquely explicit and uniquely decoupled
formulation of eigenvector assignment. Only based on this formulation,
the general and systematic design algorithms for robust eigenvector
assignment are developed in Kautsky et al. [1985]. These methods will be
introduced in Sec. 8.2.

Equations (8.3) and (8.4) are the formulas for computing the basis
vectors of eigenvector matrix V. Like Step 1 of Algorithm 5.3, this
computation can be carried out by direct back substitution if based on the
block-controllable Hessenberg form

A11 A12 Alﬂ : Bl
Bz A22 e e : : 0
[4:B] = 0O By ... ... =+ 0 (8.6)
o ... 0 B, Ay : O
where matrix blocks B; (j = 1,...,u) are the upper echelon-form matrices,

and u is the largest controllability index of the system (4, B).
As the dual of the observability index of Definition 5.1, there are p
controllability indices x; (= 1,...,p) of system (4, B) and

'ul_|_'u2_|_...+'up:n (87)

In addition, each basis vector of (8.5)d; (i=1,...,n,j=1,...,p) can
be computed corresponding to one of the p inputs which is indicated by ;.
If the d; vectors are computed this way, then from the dual of
Conclusion 5.2, for a fixed value of j, any set of y; of the n d;; vectors are
linearly-independent-of-each-other(seesExample 8.6 and Theorem 8.1). This
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analytical property is very useful in the analytical rules of eigenvector
assignment (Subsection 8.2.2).

If matrix V' is computed based on a similarity transformation
(HAH', HB) instead of the original (4, B), [one example of (HAH', HB)
is the block-controllable Hessenberg form (8.6)], then the corresponding
(8.1b) becomes

HAH'V — VA = HBK® (8.8)

A comparison of (8.1b) and (8.8) indicates that the matrix V' of (8.8) should
be adjusted to V' = H'V in order to correspond to the original system matrix
(4, B).

As stated following (8.1b), after this adjustment of V/, it will then be
used to adjust the feedback gain matrix K = K"V,

8.1.3 Eigenvalue Assignment by Generalized State
Feedback Control

The generalized state feedback control gain is KC, where K is free and rank
(C)Ag<n (see Table 6.2). The case for ¢ =n is equivalent of the state
feedback control, and is covered in the previous subsection. This subsection
deals with the case for ¢ < n, which implies additional restrictions K = KC
to the corresponding state feedback gain K, and whose design can therefore
be much more difficult than the case for g = n.

Let A be a Jordan form matrix which contains the desired eigenvalues
of matrix 4 — BKC. Then from (1.10), the eigenvalue assignment problem
can be expressed in the following dual equations:

T(A— BKC)=AT (8.9a)
and
(A— BKC)V =VA (8.9b)

where T and V(TV = I) are the left and right eigenvector matrices of 4 —
BKC corresponding to A, respectively.

This problem has a remarkable property that is not shared by either
state feedback design problem or the observer design problem—duality (see
Sec. 1.3). Unlike in problem (8.9), in those two problems, the given and dual
system matrices B and C do not appear in the problem simultaneously.

The following algorithm [Tsui, 1999a] uses two steps (Steps 1 and 2) to
satisfy-(8:9a)and-then:(8:9b)=One-of the unique features of this algorithm,
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and this feature is also shared by the method of Subsection 8.1.2, is that it
allows the corresponding eigenvector assignment to be in the form of
assigning the linear combination coefficients of the corresponding basis
vectors. See the beginning of Subsection 8.1.2.

Algorithm 8.1

Eigenstructure assignment by generalized state feedback control [Tsui,
1999al.

The algorithm is aimed at partially satisfying (8.9a) and then (8.9b)
(and TV =1I). Because (8.9a) and (8.9b) are redundant, this partial
satisfaction of (8.9a) and (8.9b) also implies the complete satisfaction of
(8.9a) and (8.9b), as will be evident at Step 2 of the algorithm.

Step 0: Partition the matrix A of (8.9) into
A = diag{A,_,, Ay}
where the eigenvalues in either A,_, or A, must be either real
or complex conjugate, and the dimensions of these two

matrices are n — ¢ and ¢, respectively.

Step 1: Compute the (n — ¢) x n-dimensional solution matrix 7),_, of
the equation

TyyA — AyyTyy= LC (8.10a)
and
rank (7, : Cl=n (8.10b)

Because (8.10a) is the same as (4.1) when the dimension is n — ¢, and
because the matrix F of (4.1) is also set in Jordan form in Algorithm 5.3,
Step 1 can be the same as Steps 1 and 2 of Algorithm 5.3.

Because the above two equations are the necessary and sufficient
conditions of the well-known state observer (See Sec. 4.1), the solution 7,_,
of these two equations always exists for observable systems, and is
nonunique if ¢ > 1.

Because (8.9a), (8.10a) and the A of Step 0 show that 7,,_, would be
the left eigenvector matrix of the feedback system dynamic matrix
corresponding to A,_,, it is desirable to make its rows as linearly
independent as possible (see Sec. 2.2).
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Step 2 of Algorithm 5.3 can use the numerical algorithms of
Subsection 8.2.1 to make the rows of matrix [T,gfqul]’ as linearly
independent as possible.

If ¢ = n (state feedback case), then Step 1 is unnecessary and 7),_, = 0.

Step 2: Compute the nxg dimensional and full-column rank
solution matrix V, of

AV, - V,A; = BK, (8.11a)
and
Th—qVy=0 (8.11b)

If the i-th eigenvalue in matrix A, is a distinct and real number 4;, then
this equation pair is equivalent of

[AT_ #l _OB] [H =0 (8.12)

n—q

where v; and k; are the i-th column of matrices V, and K, respectively
corresponding to 4;.

The equation pair (8.11) together with (8.10) obviously imply that (8.9)
is fully determined and satisfied in the sense that A = diag{A,_,, A,}, the
first n — ¢ left eigenvectors of T will be formed by 7,,_,, and the last ¢ right
eigenvectors of ¥ will be formed by V,, when K of (8.9) is computed from
K, of (8.11a) by an appropriate similarity transformation (as will be done in
Step 3 of this algorithm).

Because Step 1 of this algorithm is the same as state observer design,
Step 2 is the only nontrivial step of Algorithm 8.1.

The similarity between (8.2) and (8.11a) indicates that the solution of
(8.11a) can be computed generally using (8.3), while the remaining freedom
of (8.11a) can be used to satisfy the set of linear equation (8.11b).

It is very interesting to notice that the equation pair (8.11)
corresponding to a different system (4, B, CAT,_,), is exactly dual to the
matrix equation pair (4.1) and (4.3) of order ¢ and corresponding to system
(4, B, C). This duality is more clearly revealed by comparing (8.12) with
(6.7). In other words, the corresponding dimension m of (6.7) is now n — ¢
for (8.12), and the corresponding condition m > p of (6.7) (see Conclusion
6.1) is now p > new m (= n — ¢q) for (8.12). This new condition is equivalent
of ¢ + p > n [Tsui, 2000].

The solution of (4.1) is presented in Algorithm 5.3 (Chap. 5) and the
corresponding solution of (4.3) is presented in Algorithm 6.1 (Secs 6.1 and
6:2)FromsConclusions6:l-of :Seec:+6:2; and the dimension of (8.11) at the
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previous paragraph, exact solution of (8.11) exists if and only if either
g + p > n[Kimura, 1975] or the eigenvalues of A, are the transmission zeros
of system (4,B,CAT,_,).

If p+¢>n+1, then the solution of (8.11) is not unique. This
freedom can be considered as the freedom of assigning the right eigenvectors
of ¥, of (8.11a), and is expressed in the form of linear combination of the
basis vectors as in (8.5).

This result is compatible to its special case—state feedback case where
g =n. It is clear that if ¢ =n, then ¢+ p > n is guaranteed (arbitrary
eigenvalue assignment is guaranteed), and then p > 1 guarantees
g+ p > n+1 (eigenvector assignment of V/, is possible).

Step 3: The comparison between (8.9b) and (8.11a) shows that

K =K, (Cv,)™! (8.13)

The inverse of matrix CV, is guaranteed because [7),_ {16/]/ is
full-row rank (see Step 1) and because of (8.11b) (7,,—,V, = 0).

From the end of Step 2, there is freedom of assigning matrix V, if
g+ p >n+1. Because T,_, and V, will be formed respectively by the first
n — q left eigenvectors of T and the last ¢ right eigenvectors of V' of the
feedback system dynamic matrix of (8.9), and because matrix [7;_,, | is
full-row rank, to make the actual eigenvector matrices 7 and V' as well
conditioned as possible so that the eigenvalues can be as robust as possible
(Sec. 2.2), V, may be assigned such that matrix CV,, is as well conditioned as
possible. The most systematic and effective numerical algorithm for this
assignment is presented in Subsection 8.2.1. (such as Algorithm 8§.3).

Algorithm 8.1 is uniquely simple, analytical, and reveal the duality
property of the original problem (8.9) in Steps 1 and 2. Hence its dual
version is directly available as follows:

Step 0 : Divide the n eigenvalues into A = diag{A,_,, A,} (8.14)
Step 1 : Find V),_, such that AV,_, — V,,_, A,—p, = BK,_, and

rank[B . V,_,| =n (8.15)
Step 2 : Find 7, such that 7,4 — A, T, = L,C and T,V,,_, =0 (8.16)
Step 3:K = (T,B)"'L, (8.17)

Because parameters p and ¢ can be different from each other, the two dual
versionsyof-Adgorithm:8:l-can.complement each other.
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For example, if p + ¢ = n + 1, then neither ¢ nor p can be reduced to
make an even ¢ and p from the originally odd ¢ and p (or neither the rows of
matrix C nor the columns of matrix B can be ignored) for arbitrary
eigenvalue assignment. Now if all assigned eigenvalues are in complex
conjugate pairs and ¢ is odd (a very common situation), then Step 0 of
Algorithm 8.1 cannot be implemented. This difficulty has been studied for
years since [Kim, 1975] without simple solution [Fletcher and Magni, 1987
Magni, 1987; Rosenthal and Wang, 1992].

However, because in this very situation both n — p and p are even, the
above dual version of Algorithm 8.1 can be applied to solve this problem
without a hitch.

Example 8.1
-4 0 -2 4 2
Let(4,B,C) = 0 0 1 0 -2 [8 (1) (1)}
1 -1 =2 0 1

Let the assigned eigenvalues be —1, -2, and —3. Compute matrix K so that
matrix 4 — BKC has these eigenvalues, using Algorithm 8.1.

Step 0: We arbitrarily select A,_, = —3 and A, = diag{-2, -1}

1 0 1
010

Any linear combination of D; would make the first column of (4.1)
equal O for all L. The free matrix L of (4.1) can be used to satisfy the
remaining two columns of (4.1) from any 7,_,, but will not be used in the
subsequent steps of this algorithm. We arbitrarily select ¢, =[1 0] so that
T,y =ciDy=[1 0 1]islinearly independent of the rows of matrix C.

Step 1: The ¢ (= 2) basis vectors of T,_, are D; = [

Step 2: Because p + g = n+ 1, the solution of Step 2 is unique and
can be computed based on Eq. (8.12). In other words, Eq.
(8.12) is used twice for the two eigenvalues —2 and —1 and
their corresponding columns of matrices V, and K,. The
solution is

0 1
ve=|-1 3 and qu[_ll/z l_ﬂ
0 —I

It-cansbe-verifiedsthat-both (8.11a) and (8.11b) are satisfied.
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1/2 5/4
-1 =2
The corresponding matrix 4 — BK, C has the desired eigenvalues.

Step 3: From Eq. (8.13), K = K,(CV,) ' =

Example 8.2 (the dual version of Algorithm 8.1 on the same problem)

Step 0: According to (8.14), we similarly select A,_, = —3 and
A, = diag{-2,—1}

Step 1: The p (= 2) basis (column) vectors of solution [V;fp : K,’H,]’

of the first equation of (8.15) are

4 -3

1 0

p_ |3 2
—1/2 —1/4

0 1

Any linear combination of D; would satisfy the first equation
of (8.15). We arbitrarily select¢; = [1 1] so that V,,_, = D,
(the first three rows) ¢; =[1 1 —1] so that the second
equation of (8.15) is also satisfied. Matrix K,_, is not needed
in the subsequent steps of the algorithm.

Step 2: Because p 4+ ¢ = n+ 1, the solution of (8.16) is unique and
can be computed by using Eq. (6.7) [which is equivalent of
(8.16) if the matrix B of (6.7) is replaced by matrix V,_,]
twice. The solution is:

1 1 2 0 1
T"_{l ) 3] and Lp—{l 3]

It can be verified that (8.16) is satisfied.
— - 1/2 5/4 .
Step3: K= (T,B) L,= R according to (8.17)

which is the same as the K of the basic algorithm version of Example 8.1.
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8.1.4 Adjustment of Generalized State Feedback Control
Design Priority and Procedure

Algorithm 8.1 assigns the n arbitrarily and previously chosen poles to the
system exactly if ¢ + p > n. The first group of n — ¢ eigenvalues can always
be assigned exactly and their corresponding n — ¢ left eigenvectors 7,
always have ¢ basis vectors for each. These eigenvectors are proposed to be
assigned so that the rows of matrix [T,’HIFI]' are as linearly independent as
possible. The second group of ¢ eigenvalues can be assigned exactly if and
only if either g + p > n or these eigenvalues are the transmission zeros of
system (A4, B, T,—). If g+ p > n+ 1, then there are ¢ + p — n basis vectors
for each of the corresponding ¢ right eigenvectors V,, and these eigenvectors
are proposed to be assigned so that matrix CV, is as well conditioned as
possible.

However in practice, many different situations and different require-
ments may arise that demand the above design procedure be adjusted
accordingly.

First, if ¢ + p<n yet ¢ x p > n, then Algorithm 8.1 may not yield exact
solution, yet arbitrarily given poles can be exactly assigned generically
[Wang, 1996], although the design procedure of Wang [1996] is very
complicated.

Second, even if ¢ xp<n and exact assignment of arbitrarily given
poles is not even generically possible [Wang, 1996], it is desirable and it
should be in many cases possible based on Algorithm 8.1 to assign the
second group of ¢ poles approximately to desirable areas. This is achieved
while the first group of n — ¢ poles are still exactly assigned by Algorithm
8.1. This level of pole assignment should be good enough in practice.

Third, because the two groups of eigenvalue/vectors are treated very
differently in Algorithm 8.1—the first group has much higher priority, it is
useful to try different groupings among the assigned eigenvalues and their
eigenvectors.

Fourth, unlike the static output feedback case where all m rows of
matrix C(AC) are corresponding to direct system output measurements,
g —m rows among the ¢ rows of our matrix C are corresponding to the
converged estimates of the linear combinations of system states. Therefore
these ¢ — m rows of C can not be treated indifferently from the rest m rows
(of matrix C) of matrix C.

Fifth and finally, in some practical situations it is more desirable to
minimize the system zero-input response with some prior knowledge of
system initial state, than to make the eigenvectors as linearly independent as
possible.
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Each of these five different considerations is addressed by each of
the following proposed adjustments of Algorithm 8.1. These adjustments
are possible because Algorithm 8.1 is uniquely simple, analytical, and
explicit.

Adjustment 1: Instead of designing T),_, in Step 1 for the maximized
angles between the rows of [T}, : CY, it will be designed so that the
arbitrarily given ¢ eigenvalues of A, are the ¢ transmission zeros of system
triple (4, B, T,—,).

Based on the first of the above five considerations, this adjustment
should be applied when p+ ¢<n since otherwise the arbitrary pole
assignment is already guaranteed, and should be executable if g xp > n,
because arbitrary pole assignment is generically possible if ¢ x p > n [Wang,
1996]. Comparing the algorithm of Wang [1996], the computation of this
adjustment of Algorithm 8.1 is obviously much simpler. Besides, the
algorithm of Wang [1996] considered the pole assignment only (not the
eigenvector assignment).

This adjustment may not yield result if ¢ x p<n because under this
condition arbitrary pole assignment is impossible [Wang, 1996].

Example 8.3 below demonstrated this adjustment.

Adjustment 2: Instead of designing T),_, in Step 1 for the maximized
angles between the rows of [T} : C']', it will be designed so that there are ¢
transmission zeros of system triple (4, B, T,—,) in desirable proximity
locations.

This deviation from the priority of exact pole assignment, which is
prevalent for forty years until today, is actually quite practical. First, there is
no generally optimal and precise pole selection (see Subsection 8.1.1).
Secondly, the other parameters of the matrix such as the conditions of the
eigenvectors, which determine the sensitivity of the poles, can be as
important as the poles themselves.

Because assigning proximity transmission zeros is conceivably easier
than assigning precise transmission zeros, this adjustment can be applied for
some open-loop systems with p x ¢ <n, even though exact pole assignment is
impossible under these conditions and for arbitrarily given poles [Wang,
1996]. For example, stabilization (assign the ¢ transmission zeros in the open
left half plane) should be possible in many cases even if p x g<n.

Because the requirement of proximity pole assignment is more vague
than that of precise pole assignment, the precise sufficient condition in terms
of parameters {n,p, g} for this assignment may not exist. A practical and
high quality feedback control system design that requires the guidance of
advanced control theory should consider not just stabilization, but also high
performance and robustness.
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Adjustment 3: As stated in the beginning of this subsection and in the
third of the above five considerations, the two groups of n — ¢ (or n — p) and
then ¢ (or p) poles are treated really differently by our design algorithm.
Therefore, the different grouping of the n poles into these two groups can
really make a difference.

Conceivably, One should place the more dominant and more critical
poles into the first group. This kind of considerations of groupings of the
system poles is similar to all three eigenvector assignment procedures of Sec.
8.2.

This design adjustment is demonstrated by Example 8.4 below, which
showed a quite improved design solution which is based on a different pole
grouping.

Adjustment 4: As stated in the fourth of the above five considerations
or in Sec. 6.3, our matrix C has uniquely two components. One component
is matrix C which is corresponding to the direct system output [= Cx(1)]
measurement. The second component is matrix 7" (not the same 7T of this
subsection) which is corresponding to a converged estimation of 7x(z).
Thus these two component matrices of C should be treated differently in the
design.

Matrix C appeared mainly in Step 2 of the design algorithm where the
q right eigenvectors V, are assigned to make matrix CV, as well conditioned
as possible. This assignment should consider the difference between the rows
of component matrices C and 7 in matrix C. For example, the weighting on
the vectors of C may be higher than that on the vectors of T (see Algorithm
8.3). This design adjustment can be applied when there is design freedom for
Vy (or when p +¢g > n+1).

Adjustment 5: Until now the first n — ¢ left eigenvectors are assigned
either for maximized angles of the rows of matrix [7),_, ?,]/ ifg+p>n,or
for pole assignment (if p + ¢<n), in Design Adjustments 1 and 2 above.
However, the following possible different goal of eigenvector assignment
can also be considered.

Because the zero-input response of the feedback system state can be
stated as ¥ eMTx(0), and because it is often useful to minimize the zero-
input response, a useful goal is to assign this 7 (the same 7 of this
subsection) such that 7x(0) is minimized [if x(0) is known]. Although this
goal of eigenvector assignment was proposed before, that proposition was
for state feedback design case only.

This design adjustment is demonstrated by Example 8.5 below.
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Example 8.3: Adjustment 1

Let(4,B,C) =

—_o O O
S oo =
—_ o = O
S = O O
SO = O

and let the assigned poles be {—1, —2, =3, —4}.
Because p + ¢ is not greater than n, we will apply Design Adjustment 1
above to assign these four poles precisely.

Step 0:  A,_, = diag{—1, -2}, and A, = diag{—3, —4}

Step 1:  The g (= 2) basis vectors for each of the n — ¢ (= 2) rows of
matrix 7,_, are

w 0 —1 1 x 3 =21
Dl_[vO 00} and Dz_[yo 00]

where {u, v, x, y} can be arbitrary. Any linear combination
of the rows of Dy and D, would make the last two columns of
the corresponding (4.1) equal 0 for all L. The remaining first
two columns of (4.1) can be satisfied by the free matrix L of
4.1).

Because p+ ¢ is not greater than n, we will select the linear
combinations of D; and D, so that the remaining two eigenvalues —3 and
—4 are the transmission zeros of system (4, B, T,—,). Because p x ¢ is not
greater than 7, the solution may not exist. Fortunately, the solution exists in
this example as¢; = ¢, = [1 0] and u = 60 and x = 84. The corresponding

r_faDi]_Je0 0 —1 1
e CzDz 84 3 -2 1

and is linearly independent of the rows of matrix C.
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Step 2:  The design of Step 1 guarantees the unique solution of this

step as
1 1
3 4 6 4
o= 15 1o ™ K= [119 179]
45 48
Step 3: From Eq. (8.13), K = K,(CV,) ' = [2? ég]

The corresponding matrix 4 — BKC has the desired eigenvalues.

Example 8.4: Adjustment 3

Let system (4, B, C) and the assigned three eigenvalues be the same as that
of Examples 8.1 and 8.2.

Step 0: We select A,_,=—1 and A, =diag{—-2,—3}, which is
different from the result of Step 0 of Examples 8.1 and 8.2.

Step 1: Equation (4.1) implies that

-3 0 -2

103 : -3 -5 o 1 1|=°

o1 0 : 1 1| -t -l

Dy £y 0 -1 0
0 0 -1

We arbitrarily select ¢; =[1 —2] so that T, ,=¢D| =
[l —2 3]and matrix [T ,’l_qf/]' is rank n. The first column of
both sides of (4.1) equals O for this 7,,_, and for all L. The
free matrix L can be used to satisfy the remaining two
columns of (4.1).
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Step 2: Because p + ¢ = n + 1, the solution of Step 2 is unique:

2 -9
V,=1]-5 3 and Kq:[—57/2 13/74}
4 5

It can be verified that both (8.11a) and (8.11b) are satisfied.
—1/26  35/42
—7/13 —14/13}
The corresponding matrix 4 — BKC has the desired eigenvalues, as
that of Examples 8.1 and 8.2. However, the feedback gain K is much smaller
(and therefore much more robust and much better) in this example.

Step 3: From Eq. (8.13), K = K,(CV,) ' = [

Example 8.5: Adjustment 5

Same system and the same assigned eigenvalues as Examples 8.1, 8.2, and
8.4.

If the initial state is known as x(0) = [0 x 0] where x # 0, then in Step
1, Dix(0) = [0 x]". To minimize 7,_,x(0), we will select ¢; = [1 0]. The
corresponding result of this adjustment is the same as that of Examples 8.1
and 8.2, and has the first row of Tx(0) equal to 0.

On the other hand, if the initial state is known as x(0) = [x 2x x|’
instead where x # 0, then in Step 1, D;x(0) = [4x 2x]'. To minimize

T,-4x(0), we will select ¢; =[1 —2]. The corresponding result of this
adjustment is the same as that of Example 8.4, and has the first row of 7x(0)
equal to 0.

8.1.5 Conclusion

For the problem of assigning exactly n arbitrarily given eigenvalues to the
dynamic matrix 4 — BKC, the state feedback case [rank (C) = ¢ = n] has no
restriction on system (4, B, C), while the generalized state feedback case
has the restriction of ¢ + p > n on system (4, B, C).

However, even if ¢ + p<n but ¢ x p > n, Adjustment 1 of our design
algorithm can still make the arbitrary pole assignment generically possible.

Because eigenvectors determine the sensitivity and robustness proper-
ties of their corresponding eigenvalues, different eigenvector assignments
can make a substantial difference in the condition number of the
corresponding eigenvalue assignment problem. As demonstrated by the
different-eigenvectonsassignmentsresults of Examples 8.1 and 8.4.
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The development of computationally reliable pole assignment algo-
rithms has been substantial for state feedback case [Gopinath, 1971;
Miminis and Paige, 1982; Petkov et al., 1986; Duan, 1993a] as well as for the
static output feedback case (similar to generalized state feedback case)
[Misra and Patel, 1989; Syrms and Lewis, 1993a]. But almost all of these
algorithms do not discuss how to assign the eigenvectors (the eigenvalue
assignment under more general conditions is already difficult enough
[Wang, 1996]). Thus these algorithms cannot prevent a bad eigenvector
assignment, which can make the corresponding eigenvalue assignment
problem bad conditioned, and thus make the computation of this
assignment unreliable in spite of a numerically stable algorithm.

Therefore eigenvector assignment is as important as eigenvalue
assignment. All pole assignment algorithms of this book are such that the
corresponding eigenvector assignment is in the form of assigning the linear
combination coefficients of the basis vectors of these eigenvectors. This is a
distinct advantage because the systematic and effective eigenvector assign-
ment algorithms (Algorithms 8.2 and 8.3) of the next section are based
entirely on this assignment formulation.

For the problem of eigenvector assignment assuming the eigenvalues
are already assigned exactly, there is also much difference between the state
feedback case and the generalized state feedback case. There are p basis
vectors for each eigenvector in state feedback case. In the generalized state
feedback case (Algorithm 8.1), there are ¢ basis vectors for each of the first
n — g left eigenvectors, while there are only ¢ + p — n basis vectors for each
of the remaining ¢ right eigenvectors.

In addition to assigning the eigenvectors for the best possible
condition, this subsection also proposed four different yet practical
objectives of eigenvector assignment in Adjustments 1, 2, 3, and 5.

Finally, in addition to these distinct advantages on the generality of
eigenvalue assignment (see the dual version and the Adjustments 1 and 2)
and on the unique and explicit form of eigenvector assignment, the
algorithm of this book is very simple in light of its tasks. This is fully
demonstrated by the numerical examples. The result in every step of these
five examples is explicit and in fraction form. This implies that the algorithm
is very explicit, simple, and analytical.

Based on these explicit, simple, and analytical design algorithms, this
book has opened several independent research directions on this very
challenging and very effective eigenstructure assignment problem, especially
in generalized state feedback case, as discussed in the five design adjustments
of subsection 8.1.4.
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8.2 EIGENVECTOR ASSIGNMENT

Eigenvectors are extremely important not only because they decide the
sensitivities of their corresponding ecigenvalues, but also because of the
following important properties. From (2.2),

t
x(1) = V MV 1x(0) +/ v M=y Bu(t) dr (8.18)
0

From (8.1b) and (8.6),
K=KV '=[B/":0/(4—- VAV (8.19)

Thus if A is assigned and [4, B, x(0), and u(7)] are given, then the dominant
factor that finally decides the smoothness of response (8.18) (see also
Example 2.1) and the magnitude of the feedback control gain K of (8.19)
(see also Examples 8.1 and 8.4), is eigenvector matrix V.

From (8.5) there are pxn free parameters (in ¢;) available for
eigenvector assignment after the eigenvalues are assigned. Thus for p > 1,
the freedom of eigenvector assignment not only exists, but is also very
significant.

Research on eigenvector assignment dates from the mid-1970s [Moore,
1976; Klein and Moore, 1977; Fahmy and O’Reilly, 1982; Van Dooren,
1981; Van Loan, 1984]. However, it was only in 1985 that eigenvector
assigment freedom began to be expressed in terms of the basis vectors of
each eigenvector, such as ¢;D; of (6.1) for left eigenvectors [Tsui, 1985] and
D;c; of (8.5) for right eigenvectors [Kautsky et al., 1985]. Here the D;
matrices are already determined and the ¢; vectors are completely free.

Although this is only a new expression of eigenvecvtor assignment
freedom, it finally enabled the full use of this freedom in many important
design applications (see Fig. 5.1).

This section discusses how to assign the eigenvectors so that the angles
between these vectors are maximized, based on this new expression or
formulation. Subsections 8.2.1 and 8.2.2 regard numerical methods
[Kautsky et al., 1985] and analytical rules [Tsui, 1986a, 1993a], respectively.

For uniformity, the entire section is formulated as the computation of
the p-dimensional column vectors ¢; for the eigenvectors D;c; (i =1,...,n),
even though the D; matrices computed from different applications [such as
(6.1), (6.6), (8.10), (8.11), (8.15), and (8.16)] can have different dimensions.
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8.2.1 Numerical Iteration Methods [Kautsky et al., 1985]

The single purpose of numerical eigenvector assignment methods is to
maximize the angles between the eigenvectors. This purpose can also be
interpreted as minimizing the condition number of eigenvector matrix
Vo) &IV

From (2.16), (2.24), (8.19), and (2.2), a smaller x(¥V) can generally
imply higher robust performance, higher robust stability, lower control gain,
and smoother response, respectively.

To simplify the computation, the methods of this subsection require
that all p vectors d; (j=1,...,p) in each matrix D; (i=1,...,n) be
orthogonal and normalized, or djdy =y and [|d;|| =1 Vi and j. This
requirement can be met by the following two ways.

The first way is to satisfy this requirement during the computation of
D; itself. For example, in the computation of (8.4), we first make the OR
decomposition on the matrix:

[A—Jd:—B|=[R:0]Q,, i=1,....n (8.20)

where Q; is an (n + p)-dimensional unitary matrix. Then the D; matrix of
(8.4) is

0
1y

D,«:[In:O}Q,{ } i=1,...,n (8.21)

The second way is to compute matrices D; first, and then update these
matrices to satisfy this requirement. This second step can be accomplished
by making the QR decomposition on each D;:

Di:QiRi7 izla"'vn (8223)

where Q; is an n-dimensional unitary matrix. The D; matrix can be updated
as

D,-=Qz{1”], i=1,....n (8.22b)

which retains the same properties of the original D;.

We will study two numerical methods named as Algorithms 8.2 and
8.3, respectively. The first method updates one vector per iteration, to
maximize the angle between this vector and other n — 1 vectors. The second
method-updates;tworamong:aseparatessct (say, S) of n-orthonormal vectors
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at each iteration, to minimize the angles between these two vectors and their
corresponding D;’s while maintaining the orthonormality of S. These two
methods are named ‘“‘rank-one” and “‘rank-two” methods, respectively, and
work from quite opposite directions (but for the same ultimate purpose).

Algorithm 8.2
Rank-one method of eigenvector assignment [Kautsky et al., 1985]
Step 1: Let j = 0. Set arbitrarily an initial set of n vectors
v = Dicy, i=1,....n(|c]| =1Vi)

Step 2: Let j =j+ 1. Select a vector v; for updating. Then set the
nx (n— 1) dimensional corresponding matrix
Vi= Vit tViop tVigr oot V)
Step 3: Make QR upper triangularization of V:
Fj
0

n—1

Vi=OR; :[Qj : qj}

where Q; and R; are n-dimensional unitary and (n— 1)-
dimensional upper triangular matrices, respectively. Hence
q; (llq;ll = 1) is orthogonal to R(V;) because q;V; = 0.

Step 4 Compute the normalized least-square solution ¢; of D;¢; = g;
or the projection of q; on D;: (see Example A.8 or Golub and
Van Loan, 1989)

D{q,
¢ =1~ (8.23)
T 1Dl
Step 5: Update vector
D;Dq;
v = Dy = (8.24)
S|V /1 |
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Step 6: Check the condition number of V' = [v; : ... :v,]. Stop the
iteration if satisfactory. Otherwise go to Step 2 for another
iteration.

It is a normal practice to stop when all n vectors are updated, or when
index j equals n at Step 6.

At Step 3 the QR decomposition may not be performed from the start
to finish on matrix V;, but may be obtained by updating the previous OR
decomposition result (on matrix V;_1). The computation of this update is of
order n? [Kautsky et al., 1985], which is substantially lower than 27°/3 of the
normal QR decomposition (see Appendix A, Sec. A.2). However, such an
updating algorithm has not appeared in the literature.

Based on experience, Kautsky et al. [1985] points that the first sweep of
n vectors of Algorithm 8.2 is very effective in lowering x(V), but the
algorithm cannot guarantee the convergence to the minimal x(¥). This is
because the maximization of the angle between one eigenvector to the others
cannot guarantee the maximization of a// angles between the n eigenvectors.

Tits and Yang [1996] claim that each of the above iterations can
increase the determinant of matrix V,|V|, and the whole algorithm can
converge to a locally maximum |V| depending on the initial value of V" at
Step 1.

Algorithm 8.2 is also extended to the complex conjugate eigenvalue
case by Tits and Yang [1996], using complex arithmetic operations. To use
real arithmetic operations, the results corresponding to complex conjugate
eigenvalues in Algorithm 5.3 (Step 1) and in (8.3) can be used.

Algorithm 8.3

Rank-two method of eigenvector assignment [Kautsky et al., 1985; Method
3, 4; Chu, 1993b]

Step 1: Select a set of orthonormal vectors x;, i=1,...,n. An
example of such a set is [x; : ... : x,] = I. Compute the basis
vector matrix D; which forms the complement space of
Dia i= 1,...71’1.

p=o, |
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R:
for i=1,...,n. Minimizing angles between x; and D; is
equivalent to maximizing angles between x; and
Bl‘, i:l,...,n.

Step 2: Select two vectors x; and X;,; among the n vectors. Rotate
and update these two vectors by an angle 6 such that

cos(0)  sin(0)

[J XJ-H] [J XJ-H] sin(@) COS(B) (8-24)

and such that the angle ¢; between X; and D; and the angle
¢;41 between X;;1 and Dy are maximized. This is expressed
in terms of 0 as

mln{r cos qSJ +1 cos ¢]+1}

= min{r} DX + 17,1 D} K [}

= moln{cl sin® 0 + ¢ cos” 0 4 ¢3 sin 0 cos 0} (8.25)

= mein{f((?)} (8.26)

where in (8.25),

_ —_—
= rjzxj’.DjJrlD]Jrl P+ r +1D'D.xj+1
2 =X D;Djx; + 17, jHDJHD]ijH (8.27)
3 = 2x; ( ]+1DJ+1D,+1 Dij)XjH

and r; are weighting factors to ¢; (i =, j+ 1). For example,

the optimization on robust stability measure M3 of (2.25)
requires that

=[Re{2)|", i=j, j+]1

-
» |
ol *']E. (Yt 2L ’:E L‘ﬂ g
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The function f(0) of (8.26) is positive, continuous and
periodic, and has a global minimum. The examination of
£(0) of (8.25) shows that if ¢3 = 0 or if ¢; = ¢,, then (8.25) is
at its minimum when 6 = 0.

For ¢3 # 0 and ¢| # ¢,, the nonzero values of 6 can be
determined by setting the derivative of f(0) (with respect to
0) to zero:

f1(0) = (¢1 — ¢2)sin(20) + ¢3cos(20) = 0

or
G _ 2tan0
e tan(20) = T a0 (8.28)
or
0= 1 tan ™! e + kn (8.29)
2 Cr — €1 '

where k =0, +1, +£2,...
Integer k of (8.29) must also make the corresponding 6
satisfy

S"(0) =2[(c1 — ¢2) cos(26) — ¢3sin(20)] > 0
or

tan(20) < a-o

(8.30)

3
Instead of (8.29), which computes 0 from the first
equality of (8.28) or from 20, there is a more accurate

formula for 6, which is derived from the second equality of
(8.28) such that

14 (1 +cg)'?

C4

0 = tan~! + kmn (8.31a)

where

(8.31b)

All Rights Reserved.



After 0 is determined from either (8.29) or (8.31) with

(8.30) guaranteed, (8.24) is the last computation of Step 2.
Step 3: If the value 0 of Step 2 is close to 0 or kn (k is an integer),

then x; and x;,; are already near the linear combination of
Dj and Dy

If this is not true for all j, then go back to Step 2 for
more iteration. Otherwise, find the projections of all n-
updated vectors x; on the R(D;) (i=1,...,n), or

D,'(D/-Xl‘)
V= i=1,....n
1]

The critical step of Algorithm 8.3 is obviously Step 2,
which has not appeared in the literature either. This version
is based on and revised from Chu [1993b].

According to Kautsky et al. [1985], the order of computation is similar
in each update of Algorithms 8.2 (Step 3) and 8.3 (Step 2). The order of
computation of (8.27) is 4pn (four pairs of x/Dy) which should constitute the
main computation of Step 2 of Algorithm 8.3, while the simplified
computation of Step 3 (Algorithm 8.2) is of order n’.

Also according to Kautsky et al. [1985], Algorithm 8.3 requires less
iteration and is more efficient than Algorithm 8.2, for well-conditioned
problems. This is understandable because Algorithm 8.3 starts with an ideal
orthonormal solution and then makes it approach the actual solution, while
Algorithm 8.2 starts with an arbitrary solution and then makes it approach
orthonormal. However, for ill-conditioned problems, both Algorithms 8.2
and 8.3 cannot yield reliable results [Kautsky et al., 1985]. In such a case we
may use the analytical rules of Subsection 8.2.2 or the “Method 17 of
Kautsky et al. [1985], but the latter can be very complicated.

Although Algorithms 8.2 and 8.3 cannot guarantee convergence for ill-
conditioned problems, they are still very popular among researchers because
of their relative simplicity as compared to Method 1 of Kautsky et al. [1985],
and they have already been made into CAD software [MATLAB, 1990].

An advantage of Algorithm 8.3 over Algorithm 8.2 is that the former
can consider the weighting factors r;, while the latter cannot. Thus a
direction of improvement for Algorithm 8.2 is to incorporate weightings
into its updating procedure. For example, the eigenvectors corresponding to
more dominant eigenvalues (see Subsection 2.2.2) should be updated first
and be updated more times, instead of being treated indifferently from less
critical-eigenvectorsrassinsthe-currentsversion of Algorithm 8.2.
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Algorithm 8.3 could also be improved by the additional arrangement
of the combination pairs of x; and D; at Step 1. The current combination
pairs between x; and D; (i = 1,...,n) are arbitrarily made. However, in this
arbitrary initial combination, the angle between x; and D; may be large,
while the angle between x; and D;(j#i) may be small. Thus a more
reasonable initial arrangement should pair x; with D; together instead of
with Di.

Consideration of the analytical information of eigenvalues and
controllability indexes in eigenvector assignment, is a feature of analytical
eigenvector assignment rules discussed in the next subsection.

8.2.2 Analytical Decoupling Method

Numerical eigenvector assignment methods are aimed at maximizing the
angles between the feedback system eigenvectors, or the minimization of the
condition number of the eigenvector matrix x(V).

However, k(}') may not be generally accurate in indicating individual
eigenvalue sensitivity and system robust stability (see Sec. 2.2). In addition,
numerical methods often overlook some critical and analytical system
parameters and properties such as eigenvalues, controllability indices, and
decoupling. From Examples 2.4 and 2.5 and their analysis, decoupling is
very effective in eigenvalue sensitivity and robust stability.

Analytical eigenvector assignment discussed in this subsection is based
on decoupling. This assignment is also based substantially on the analytical
properties of eigenvalues and controllability indices (y;,j=1,...,p).
However, this assignment cannot claim the sharp numerical property of a
minimized x(V).

The analytical eigenvector assignment is also based on the block-
controllable Hessenberg form of system matrices (8.6), because this form
reveals the information of controllability indices. Three properties should be
noticed based on this form.

First, the feedback system eigenvectors (and their basis vectors) are
computed from only the lower n — p rows of matrix 4 and the feedback
system poles (see Step 1 of Algorithm 5.3 for the dual case).

Second, the feedback system eigenvectors are determined independent
of and prior to the feedback gain K, which can affect only the upper p rows
of matrix 4 and the upper p rows of matrix 4 — BK (see Step 3 of Algorithm
5.3 for the dual case).

Third and finally, if the basis vectors of the feedback system
eigenvectors are computed by back substitution operation, then each of
these basis vectors can be identified with one (say the j-th) of the p inputs of
thessystems(seesConclusionsS:-l-and:-Example 5.5 for the dual case).
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Let us first analyze some analytical properties of these basis vectors if
they are computed by back substitution and based on the form (8.6) of the
system matrices. This analysis is also based on the assumption of
K=y == - =, for simplicity of presentation. This assumption can
always be lifted because the sequence of system inputs can always be
altered.

Now for a fixed eigenvalue 4; and its corresponding eigenvector, each
of the p corresponding basis vectors, d;,j = 1,...,p, can be expressed as
[Tsui, 1987a,b, 1993a]

X @ ... X X
: X
: * }pl
: 0
X X 0
X X
X
* .
: }Pz
0 : 1
R Ai
=[x : ... : 0 : : AUy (8.32)
:'71
pied
X
X
*
0 }P,uj
0
0
L0 i
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ek

In the matrix U; above, the “x” entries are arbitrary elements, and the
entries are nonzero elements and are located at the j-th position from top
down of each block, and the block size px (k=1,...,u) indicates the
number of controllability indices that are no smaller than k (see Definition
5.1 for the dual case). In addition, matrix Uj is determined only by the lower
n — p rows of matrix 4, and is independent of ;. Hence matrix U; can be
considered a ‘“‘coefficient matrix” of the j-th basis vector d;; for any 4;.
The partition of d; in (8.32) is for analysis only. In actual design
computation the d; can be computed directly by back-substitution.

Example 8.6

Let puy =4,y =2,u3 =2, and py = 1. Then from (8.32),

*
1
I

X X X X
0 %
x x x 0 0
X x 0 x 0
1
X 0| A 01
d; = dp =
7 x x 0 0|4 ” 0 |:j-i:|
x 0 ofL4y 0 0
x Y00 0 0
|* 0 0 0] L0 0]
AUy AUyvip
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X X X
X X X
*

X X

x 0 *

x 0 1 0
da=1. 9 [A,} da =1,
* 0 0

0 0 0

10 0] 1 0|
AUsv; AUgvia

Theorem 8.1

(A): For a fixed value of i (or 4;), its corresponding p basis vectors d; are
linearly independent.

(B): For a fixed value of j (or Uj), any set of p; basis vectors dj; (g
different values of i) are also linearly independent. Theorem 8.1 is dual to
Theorem 5.2.

Proof

Part A can be proved by the form of matrix U; (j =1,...,p) in (8.32).
Part B can be proved by the fact that any w; of d; vetors (say,
i=1,...,1;) can be written as [from (8.32)]

[dyj| - dyj] = Ujlvyl - - [V] A UV (8.33)

Here matrix V; according to (8.32) is a i; dimensional Vandermonde matrix,
which is nonsmgular for different 1;. Now Part B follows from the form of
U; of (8.32).

Part B can be extended to general eigenvalue cases. This is because in
(8.33) the eigenvalues are associated only with matrix V; which is the right
eigenvector matrix of a companion form matrix [the transpose of (1.14)
Brand, 1968]. Therefore, in general eigenvalue cases only the matrix V;
varies from the Vandermonde form, but remains a nonsingular rlght
eigenvector matrix.
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For example (Example 8.6), if we assign the first 4 (=u;) ¢/’s
(i=1—4)=e;, the next 2(=wu)c’s (i=506)=e, the next
2(=u3)¢’s (i=7,8)=e3, and the last ugs ¢; (i=9) =eq, (e;,i=1,...,4
is the i-th column of a p-dimensional identity matrix), then (8.33) implies
that V =[U,: U;: : Ugldiag{ V1, V>, V3, V4}, where V; is a Vander-
monde matrix of dlmensmn u; and which is formed by the vectors vy
(j=1—4, values of i are corresponding to the above assignment of c¢;).

Theorem 8.2

Let U A [Uy]...|U,] of (8.32). Let the eigenvalues 4; (i =1,...,n) of the
block-controllable Hessenberg form matrix 4 — BK be divided into p

groups A; (j=1,...,p), and let each A; be a Jordan form matrix and
corresponds to the same ordered /;’s of matrix V; of (8.33).
Then (A):

V =U diag{Vi,...,V,} =[UiV1]...|U,V}) (8.34)

is a right eigenvector matrix of 4 — BK such that

V(4 - BK)V = diag{A1,...,A,} (8.35)
and (B) : U™'(4 — BK)U = A, A diag{A1,..., A} (8.36)
where A, (j=1,...,p) are y; dimensional companion form matrices.
Proof

(A): The nonsingularity of matrix V of (8.34) is proved in Theorem 8.1.
Because U;V; of (8.32-8.34) satisfies (8.1b) to (8.5) for all values of j, (8.35)

is proved.

(B): Because V; is the right eigenvector matrix of 4, (j=1,...,p)
such that

VildgVi=A,  j=1,....p (8.37a)
or

(diag{ V1, ..., V,}) " A (diag{V1,..., V,}) = diag{A,,..., A, }AA
(8.37b)
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Then equality between the left-hand side of (8.35) and (8.37b) together with
the definition of (8.34) proves (8.36).

It should be emphasized that the block-controllable Hessenberg form
system matrices (4, B) can be computed from the original system matrices
by orthonormal similarity transformation (see Algorithms 5.1 and 5.2).
Hence its feedback system dynamic matrix A4 — BK’s corresponding
eigenvector matrix V of (8.34) has the same condition number as that of
the original system matrix.

On the contrary, the matrix U of (8.34) and (8.36) is not unitary and is
often ill conditioned. Hence the eigenvector matrix diag{Vi,...,V,} of
(8.37), which corresponds to the feedback system dynamic matrix 4, of
(8.36), does not have the same condition number as that of matrix ¥ of
(8.34). Therefore we will work on the assignment of matrix ¥ instead of the
matrix diag{V1,...,V,}, even though the latter matrix is simpler.

Having analyzed the properties of general eigenvector assignment
formulation (8.5) and (8.32), we now present the eigenvector assignment rule
for decoupling. From (8.5) and (8.32), the eigenvector matrix can always be
generally expressed as

V = Uldiag{vii,...,vip}rei|...|diag{v,i, ..., Vsp}cy] (8.38)

where ¢; (i =1,...,n) are p-dimensional free column vectors.

General Rule of Eigenvector Assignment for Decoupling

It is clear that the eigenvector matrix V of (8.34) is a special case of that of
(8.38) in the sense that

p; of ¢’s =e;,j=1,...,p (each value of i corresponds to a different
eigenvalue, and e; is the j-th column of a
p-dimensional identity matrix)

(8.39)

It is also clear that while (8.38) and (8.34) have the same first (or the left)
component matrix U which is fixed by the open-loop system parameters
only [the lower n — p rows of (8.6)], the second (or the right) component
matrix of (8.38) and (8.34) is different. Specifically, the second component
matrix of (8.34) is a special case of the general second component matrix of
(8:38)smandrissdecoupledsintospadiagonal blocks V;,j =1,...,p. Because
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decoupling is very effective in system robustness, our analytical eigenvector
assignment will be based on the form (8.34) or (8.39).

Under this general eigenvector assignment formulation, the only
freedom left is on the distribution of the n eigenvalues into the p diagonal
blocks of (8.34), while each block has dimension y; and corresponds to one
of the inputs, j = 1,..., p. The following are three analytical rules which can
guide this distribution, and which are closely related to Subsection 8.1.1.
Thus this analytical eigenvector assignment not only achieves decoupling,
but also fully considers the analytical system parameters such as the
controllability indices y; and the eigenvalues.

Rule 1

Distribute multiple eigenvalues (say, A; = 4;;1) into different input blocks by
letting ¢; #c¢;.1 in (8.34) or (8.39). This is because only at the same block or
only for a same value of j, can the corresponding eigenvectors of 4; and A;,;
be generalized or be defective [see the paragraphs before Conclusion 5.2 and
(5.15d)].

A basic result in numerical linear algebra is that the defective
eigenvectors cause high sensitivity of the corresponding eigenvalues [Golub
and Wilkinson, 1976b]. For example, singular value decomposition of any
matrix A4 is always well conditioned because the eigenvectors of matrix 4* 4
are never defective, even though the singular values or the square roots of
eigenvalues of matrix 4*4 can be multiple.

Rule 2

Distribute relatively more important eigenvalues (such as the one’s closer to
imaginary axis, see Chap. 2) into blocks with relatively smaller size p;.

This is because the smaller the dimension of a matrix block, usually the
smaller the condition number of that matrix block. For example, a matrix
with size equal to one (a scalar) always has the smallest possible condition
number (= 1).

Rule 3

Distribute the n eigenvalues so that all eigenvalues within each block have as
similar magnitude as possible, and have as evenly distributed phase angles
(between 90° and —90°) as possible.

This is because such eigenvalue pattern is derived from some optimal
single-input systems (see Rule (f) of Subsection 8.1.1). From a mathematical
pointyof-viewssbecausestheseigenvalue; magnitudes are related to singular
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values in equation o1 > |A|> -+ =|4,| =0, a large difference in eigenvalue
magnitude implies a large condition number o;/0,. From a geometrical
point view, less evenly distributed phase angles imply near clustered (or
multiple) eigenvalue pattern.

The above three rules may not be exhaustive and cannot claim any
numerical optimality. However, the analytical rules are simple, general, and
do not require iterative numerical computation. Hence these rules can be
applied repeatedly in a trial-and-error and adaptive fashion (adapted using
the final results). The analytical results can also provide a more reasonable
initial value for the numerical methods.

It should be mentioned again that once the above distribution is made,
the eigenvectors can be computed directly from the open-loop system
matrices (8.6) and the /s without the component matrices U and
diag{V;,i=1,...,p} (see Step 1 of Algorithm 5.3 for the dual case).
Nonetheless, these component matrices are computed in the following
example, to demonstrate and analyze more completely our analytical
eigenvector assignment rules.

Example 8.7

Let the system matrix be

20 0 0 0 0 : 20 0

0 20 0 0O 0 : 0 20
[A:Bl=1"00s 059 . o174 1.0 . 0 o0
1895 —36 . —1341 —199 0 : 0 0

207 153 : 4479 0 0 : 0 0

This is the model of a fighter plane at flight condition of 3048 m and Mach
0.77 [Sobel et al., 1984; Spurgeon, 1988]. The five system states are elevator
angle, flap angle, incidence angle, pitch rate, and normal acceleration
integrated, respectively, while the two inputs are elevator angle demand and
flap angle demand, respectively.

The problem is to design a state feedback gain K to assign the
eigenstructure of matrix A — BK, with eigenvalues
A =—20,223 = —5.64 j42, and /45 = —10+ j10V/3.

We first compute the block-controllable Hessenberg form using the
dual of Algorithm 5.2. Because B is already in the desired form, only one
triangulavizations(fong=2)rof the-lower left corner of matrix 4 is needed.
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Hence the operator matrix H is

1 00 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0
H=10 0 =10 0 —0.0042 -0.9941 0.1086
0 0 0 0 0.0379 —0.1086 0.9931
0 0 0 0 0.9991 -0 0.0386
The resulting block-controllable Hessenberg form is
[H'AH : H'B]
[ —20 0 0 0 0 20 0
0 —20 0 0 0 0 20
= |19.0628  5.2425 —2.0387 0.4751 18.1843 0 0
0 —14.8258 —0.0718 —1.6601 —43.0498 0 0
| 0.0002 0.0005 —0.9931 —0.109 —0.0114 0 0]

which is still denoted as [4:B] in the rest of this example in order to be
compatible with the notation of Sec. 8.2. In this result, the elements [0.0002
0.0005] are computational error, and the controllability indexes are shown
as uy =3, u, = 2.

We take back substitution operation (A.20) on the last n —p (= 3)
rows of A — ;[ to derive the analytical expression of basis vectors d;; of v;
of (8.4) such that [0: ;][4 — A;I]d; = 0. During each back substitution
operation, we first set 1 at the fifth or fourth element of d;, for j = 1,2,
respectively. As a result, the coefficient matrix of (8.32) can be derived as

U=[U : U
067923  —0.114  —0.05395 09648  0.012415
—2.889  0.015167 0 —0.108166 —0.06743
= | —0.0043141 —1.02945 0 —0.11683 0
0 0 0 1 0
1 0 0 0 0

Because-two-pairssof-thesassigned-eigenvalues are complex conjugate and
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there are only two inputs, we have only two possible different distributions:

1
I 1
diag{ Vl, Vz} = diag ;Ll /12 /13 s |: :|

, Ay As
i
Ay = diag{diag{1, A2, A3}, diag{ A4, A5} } (8.40a)
and
I 1 1 {1
diag{Vy, V2} = diagq |41 Aa 45 7{/1 ; ]
) 2 A3
g A3
A, = diag{diag{/, 44, 45}, diag{/2, A3} } (8.40b)

The eigenvector matrix according to (8.34) is V =[U, V| : UsV>] and is
named V! and V2 for the two assignments of (8.40), respectively. During
actual computation, once the distribution of (8.40) is made, the matrix } can
be computed directly according to the dual of (5.10b) and (5.13¢c) without
explicit U and without complex numbers of (8.40).

To broaden the comparison, we let the third eigenvector matrix be

VP =0r
—-0.0528  0.0128  —0.1096 —0.0060 —0.15557 [i} 2% 3 24 7
0 —0.06745 0.0049  —0.1114  —2.904 | |4 4y A3 24 Js
= 0 0 —1.007 —0.1098 —0.01148 | (3 23 73 23 723
0 0 0 1 0 111 11
0 0 0 0 1 A3 03 G )

where Q is a nonsingular matrix such that (Q~'4Q, Q~'B) is in block-
controllable canonical form [the transpose of (1.16)] [Wang and Chen,
1982]. Obviously there is no decoupling in this assignment (only one block
1) and the Jordan form matrix of 4 — BK corresponding V7 is

A3 = diag{/ll,)»g,/lg,iz;,/ls} (8.41)
Matrices V' (i = 1,2,3) are the right eigenvector matrix of 4 — BK

corresponding to eigenvalues in A; (i = 1,2,3), where the system matrix
(AspB)pissingtheformy(8:6)Becausesthis pair of (4, B) is computed from the
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original (A4, B) by orthonormal similarity transformation (with unitary
matrix H), the condition number of V' equals that of the right eigenvector
matrix of the original 4 — BK.

The state feedback gain can now be determined after the eigenvectors
are determined. From (8.19) [or the dual of (5.16)], we first compute the
solution K~ of (8.1b)

K= B'[I,: 0](AV' — V'A)), i=1,23 (8.42a)

From (8.1b), K} (V")f1 = K;H' is the state feedback gain for the
system matrix H(A — BK;)H' in the form (8.6). The state feedback gains K;
for the original system matrix are (see the end of Subsection 8.1.2)

Ki=KWV)'H, i=1273 (8.42b)

and whose numerical values are

% [0.4511 0.7991 —1.3619 —0.4877 1.0057}
1:

10.0140 —0.0776  2.6043 0.2662  1.357
[0.8944 09611 —20.1466 —1.7643 0.8923
K= 10.0140 —-0.5176  1.3773 0.1494 0.1800]
and
[1 5044 14,565 23 1033

K; =
0 -1 0 0 0

It can be verified that the eigenvalues of matrices 4 — BK; (i = 1,2) are
correctly placed, while the eigenvalues of matrix 4 — BKj differ a little from
the desired 4; (i =1,...,5). This difference is caused by the computational
error rather than the method. This difference also shows that having a good
eigenvector assignment is important to the numerical accuracy aspect of
pole placement.

Table 8.1 provides a comparison of these three results.

Table 8.1 Two Numerical Measures of State Feedback Design for
Eigenstructure Assignment

K1 K> Kz
I Kill £ 3.556 20.34 15,448
(V1) 71.446 344.86 385,320
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The zero-input response of state x
corresponding to the initial state x(0)
Fig. 8.1.

(7) of the three feedback systems,
=[1 1 1 1 1], is shown in

-8 | I 1 |

0 02 04 06 08 1

2000 -




It is clear that the lower the numerical measures in Table 8.1, the
smoother the zero-input response in Fig. 8.1. From Sec. 2.2, lower values of
k(V) in Table 8.1 also imply lower eigenvalue sensitivity (or better robust
performance) and better robust stability. In addition, lower gain ||Ki|| in
Table 8.1 also implies lower control energy consumption and lower
possibility of disturbance and failure. Hence the numerical measures of
Table 8.1 and the response simulation of Fig. 8.1 can both be used to guide
design.

The comparison of these three examples also shows that eigenvector
assignment makes a dramatic difference in the aspect of technical quality of
the feedback system.

Unlike the numerical methods of Subsection 8.2.1 as well as the
optimal design methods of Chap. 9, there is a very explicit and analytical
understanding of the relation between the above properties of final results
and the design process of analytical eigenstructure assignment. Only this
understanding can guide the reversed adjustment of design formulation and
design procedure, based on the final results.

For example, the final result indicates that decoupling is extremely
effective because the third result, which does not have decoupling, is much
worse than the first two results, which have decoupling. This understanding
supports the basic decoupling formulation of the analytical eigenstructure
design.

For another example, a comparison between V' and V2 of (8.40)
indicates that the larger block is dominant among the two blocks of V. For
the larger block ¥ (with dimension u; = 3), (V1) equals 653.7 and 896.5
for the two Vs, respectively, while for the smaller block ¥, (with dimension
o = 2), k(V2) equals 23.6 and 11.8 for the two Vs, respectively. Yet the
overall k(V! = U diag{V, V>}) (i =1,2) is 71.44 and 344.86, respectively.
Thus x(V;) is dominant over x(V,) in deciding the overall x(V?). This
understanding reinforces the second rule (somehow over the third rule) of
the analytical eigenvector design.

SUMMARY

To summarize, Sec. 8.2 has introduced three relatively simple, systematic,
and general eigenvector assignment methods, and showed the dramatic
difference in feedback system quality caused by different eigenvector
assignment. Eigenvectors determine the robustness properties of their
corresponding eigenvalues, and their assignment exists only in multi-input
and multi-output (MIMO) system design problems, while eigenvalues can
most directly determine system performance. Now the robustness properties
of vounscontrolraresalsorguaranteedsof full realization for most system
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conditions and for the first time. Thus if the distinct advantage of modern
control theory was reflected mainly in the description of MIMO systems
before and since the 1960s, then this advantage can now be reflected in the
design of such control systems.

EXERCISES

8.1 Suppose n=10 and all assigned eigenvalues must be complex
conjugate.

(a) Ifg="7andp =4, can you use Algorithm 8.1 directly? Why? Can
you use the dual version of Algorithm 8.1 directly? Why?

(b) Ifg=8andp = 3, can you use Algorithm 8.1 directly? Why? Can
you use the dual version of Algorithm 8.1 directly? Why?

(c) If g=7and p =35, how can you use Algorithm 8.1 directly?

(d If g=7 and p=5, how can you use the dual version of
Algorithm 8.1 directly?

8.2 Repeat Examples 8.1 and 8.2 by assigning eigenvalue —2 at Step 1 and
{=1 and —3} at Step 2.

8.3 Use Algorithm 8.1 and its dual version to assign poles
{—1,-2,-3,—4} to the following system [Chu, 1993a]. Notice that
the provided answer K is not unique:

0 1007700
(a) 1000
_ 11 00| |10 —47 34 10
(4,B,C,K) = , oo 1 0],
-1 00 0|']0 0 49 -35 -1l
00 0 1
0 00 o] L0 1
0100771 00
(b) -10 432
_ 001 0[|000O0[T[1L 00O
(4,B,C,K) = ; ) | 62 -35
000 1[0 1 0ol'lo 100
5258 —29/84
-1 00 0] Lo o1
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8.4 Repeat Example 8.3 to assign eigenvalues {—1,—2,—3,—4} to the
following system [Chu, 1993a]

_ 0 1 1 0] =50 -49.47
(4,B,C,K) = [ }{ }

1 0 0 1 40.49 40

oS O o O

8.5 Repeat Example 8.3 and using the dual of (5.15) to assign eigenvalues
{=1,-1,-2,-2} to the following system [Kwon, 1987]

1 0 0 O |14 6
101 0 07|19 18

8.6 Let n=5p=m=2 and, according to Conclusion 6.3, ¢ =m +r,
where r is the number of stable transmission zeros of the system.
According to Davison and Wang [1974], there are generically
n—m =3 transmission zeros of the system. Therefore we assume
there are always 3 transmission zeros in this system.

Let the probability of each zero being stable as Py = 1/2 (if the
system model is given arbitrarily) or as P, = 3/4 (three times better
than 1/2), respectively. Then the probability of minimal-phase (all
three zeros are stable) is (P)® = 0.125 or (P,)* = 0.422, respectively
(see Exercises of Chap. 4).

Answer the following questions based on P; and P,. The
probability of r stable zeros is [r: 3](P;) (1 — P,)* ™" (i=1,2,[r: 3] is
the combination of r out of 3, also see Exercise 4.2).

— o oo
oo o~
—_ 0 = o
o — oo
oo~ o
—_— o oo

(a) The probability of full (arbitrary) state feedback.
Answer:  q=n,r =3,P1(r=23)=0.125P,(r = 3) = 0.422.

(b) The probability of arbitrary pole placement and partial eigen-
vector assignment or better.

Answer: g=4sothat g +p >n,r=2,P(r=2)=0.5Py(r=2) = 0.844.
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(¢c) The probability of arbitrary pole placement with no eigenvector
assignment or better.

Answer: g=3sothat gxp >n,r=1,P(r=1)=0.875Py(r=1)
= 0.9844.

(d) The probability of no arbitrary pole or eigenvector assignment
(ordinary static output feedback).

Answer: gq=m=2sothat gxp ¥ n,r=0,P;(r=0)
= 0.125, P,(r = 0) = 0.0156.

This example shows quite convincingly the following three decisive
advantages of the new design approach of this book. (1) It is very general
even it is required to be good enough [see answer of Part (c)]. (2) It achieves
exact LTR far more generally than the existing state feedback control as
shown by comparing the probability of Part (c¢) with the probability of one
of the conditions of existing exact LTR—minimum-phase. (3) Its control
can achieve arbitrary pole assignment far more generally than the existing
static output feedback as shown by comparing the probability of Part (c)
with 0%.

8.7 Repeat Problem 8.6 by changing only the parameter n from 5 to 4.

8.8 Assign poles {4; = —1,43 = =24/, A45 = —1 1,2} by state feedback:

0O 1 0 : 0 0
0 0 1 : 0 0
N - R U and
0 0 0 0 1
0 0 0 -1 -2
[0 0
0 0
a_ |1 0
0 0
0 1

Verifymand-compareseigenvectors, condition of eigenvector matrix
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k(V), norm of feedback gain || K|, robust stability (as in Example 2.5)
of the feedback system matrix 4 — BK, and zero-input response for
x(0)=[2 1 0 —1 =2, for the following three eigenstructure
assignments (partial answers are provided):

(a) (A,K):<diag{/11,273,/14,5}7 B (9) (5) 411 (1)]>

(b) (A,K):(diag{il,4,5,7~2,3}7[(7) (7) ) 41; ;])

o

. 2 0 0 0 1
(C) (A)K) = (dlag{/1172,3,4,5}7 |:25 55 48 23 5:|>

Hint:
1. Refer to Example 8.7
2. System (A, B) is a state permutation away from the block-
controllable Hessenberg form (and canonical form). To derive the
latter, permute the rows of (4, B) and the columns of A for the new
sequence {3,5,2,4,1}.

8.9 Repeat 8.8 for the new system

[0 1 0 0 0
0 0 1 0 0
A3 o s 2 and
0 0 0 1
403 1 -1 —4
[0 0
0 0
s_ |1 0
0 0
L0 1

and for the following three different eigenstructure assignments:

_ 8§ 10 5 1 2
(a) (A,K)_<d1ag{/11,,273,/1475}, {4 31 4 _2])

. (s &8 8 3 1 2
(b) (AaK):(dlag{/hl,4,5a/12,3}a |:4 3 1 4 0:|)
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. 301 0 0 2
© (A’K):(dlag{ilx273>4»5}’[29 8 49 23 3])

8.10 Repeat 8.8 for the new system

0 1 0 0 0
0 0 1 0
D I (U T A B and
0 0 0 0 1
| 4 3 1 2 2
00
0 0
a_|1 0
0 0
0 1

and for the following two different eigenstructure assignments:

. -5 =7 =21 2
(a) (A’K):<dlag{/11,2,3ul4,5}7|: 4 3 1 3 0:|>

. -5 -9 -4 1 2
(b) (A,K)z(dlag{/1174,5,/12,3},[ 4 3 1 3 2:|)

Also see the last three design projects of Appendix B for the exercises of
numerical eigenvector assignment algorithms.
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9

Design of Feedback Control—Quadratic
Optimal Control

In the modern control design literature, besides eigenstructure assignment,
there is a main result called “linear quadratic optimal control” (LQ). The
two designs are quite opposite in direction. The eigenstructure assignment,
especially the analytical eigenvector assignment, is designed mainly from the
bottom up, based on the given plant system’s structure. On the contrary, the

Q con s-designed-from-top-down, based on a given and abstract
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optimal criterion as

o0

J=(1/2) / Ix (1) Ox(1) + u(t) Ru(1))di 9.1)
0

where Q and R are symmetrical, positive semi-definite and symmetrical,
positive definite matrices, respectively. The LQ design is aimed at
minimizing J of (9.1) under the constraint (1.1a)

x(t) = Ax(¢) + Bu(t) and x(0) = xg

Inspection of (9.1) shows that to minimize or to have a finite value of
J, x(t — o0) must be 0. Hence the control system must be stable (see
Definition 2.1). In addition, among the two terms of J, the first term reflects
the smoothness and quickness of x(¢) before it converges to 0, while the
second term reflects the control energy, which is closely related to control
gain and system robustness (see Example 8.7). Hence the LQ design can
consider both performance and robustness.

Performance and robustness properties in general are contradictory to
each other. For example, the faster the x(¢) converges to 0, the higher the
control power needed to steer x(7).

The two weighting matrices Q and R can reflect the relative
importance of these two properties. A relatively large O (compared to R)
indicates higher priority for performance over control energy cost. When
R =0, the corresponding LQ problem is called “minimal (response) time
problem” [Friedland, 1962]. Anti-air missile control problems are such
problems. On the other hand, a relatively small Q (compared to R) indicates
higher priority on saving control energy over performance. When Q = 0, the
corresponding LQ problem is called the “minimal fuel problem™ [Atha-
nassiades, 1963]. Remote-orbit space craft control can be considered such a
problem.

However, the above design consideration is made in terms of only the
magnitude of matrices Q and R. There are no other general, analytical, and
explicit considerations of system performance and robustness made on the
n* parameters of Q and the p?> parameters of R (or criterion J). Hence the
LQ problem itself is still very abstract and reflects still vaguely the actual
system performance and robustness. For example, the problem (J) is set
without considering the information of the plant system parameters (4, B).
To summarize, matrices Q and R (or J) are not really the direct and accurate
reflectionsof-actual:systemsperformance and robustness.
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This critical problem is further compounded by the fact that unlike the
eigenstructure assignment, once the criterion J is set, it is very hard to
systematically, automatically, and intelligently adjust it based on the finally
computed design solution and its simulation. This is due to the fact that
complicated and iterative numerical computation is needed to compute the
solution that minimizes J. The comparison of computational difficulty of all
design algorithms of Chaps 8 and 9 is made in Sec. 9.3.

It should be noticed that the above two critical drawbacks of LQ
design is at least shared by all other optimal design results, if not more
severe. For example, the optimal design problems based on the system
frequency response are even less direct and less generally accurate in
reflecting system performance and robustness (see Chap. 2), and many
optimal control problems other than the LQ problem require even much
more computation than that of the LQ problem.

Regarding the LQ control problem, it has been extensively studied and
covered in the literature. This book intends to introduce only the basic
design algorithm and basic physical meanings of this problem. Readers can
refer to the ample existing literature for the corresponding theoretical
analysis, proofs, and generalizations.

As with the presentation of eigenstructure assignment, the LQ design
of this chapter is divided into state feedback control Kx(z) and generalized
state feedback control KCx(t) [rank(C)<n] cases, which are treated in Secs
9.1 and 9.2, respectively.

9.1 DESIGN OF DIRECT STATE FEEDBACK CONTROL

The direct state feedback design for LQ optimal control has been extensively
covered in literature [Kalman, 1960; Chang, 1961; Pontryagin, 1962;
Athans, 1966; Bryson and Ho, 1969; Anderson, 1971; Kwakernaak and
Sivan, 1972; Sage and White, 1977]. The following solution can be
formulated using calculus of variation with Lagrange multipliers.

Theorem 9.1
The unique solution that minimizes J of (9.1) and that is subject to (1.1a) is
* * * —1 pr
u (1) = —K x(1), where K" =R 'BP (9.2)

and-Pis;the.symmetric-and-positive-definite solution matrix of the following
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algebraic Riccati equation (ARE)
PA+AP+Q—PBR'BP=0 (9.3)

Based on the LQ optimal control u®(¢), there is an optimal state
trajectory x™*(¢) which is the solution of

X" (1) = Ax* (1) + Bu* (1), x" (0) = x¢ (9.4)

and the minimized LQ criterion is

1
J* = (§> X PXo (9.5)

Theorem 9.1 indicates that the main difficulty of LQ optimal design
concerns the solving of ARE (9.3). There are a number of numerical
methods available for solving (9.3) such as the method of eigenstructure
decomposition of Hamiltonian matrix [Van Loan, 1984; Byers, 1983, 1990;
Xu, 1991]

A —BR'B
H_[—Q —A'}

and the method of matrix sign function [Byers, 1987], etc. The basic version
of the first method with Schur triangularization [Laub, 1979] is described in
the following.

(9.6)

Algorithm 9.1. Solving Algebraic Riccati Equation (ARE)

Step 1:  Compute the Hamiltonian matrix H of (9.6).
Step 2:  Make Schur triangularization [Francis, 1961, 1962] of
matrix A such that

NIRRT

/ —_— —_—
UHU—S—{O Srn

], UU =1 (9.7)

where matrix S is an upper triangular (called Schur
triangular form) matrix whose diagonal elements equal
the eigenvalues of H (except a 2x2 diagonal block for
complex conjugate eigenvalues), and the eigenvalues in
matrix Sy are stable.
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Step 2a: Letk=1,H =H.
Step 2b: Compute the unitary matrix Qy such that

O Hy = Ry (9.8)
where Ry is upper triangular (see Appendix A, Sec. 2).
Step 2c:  Compute Hy,1 = RiOy. (9.9)

Step 2d: If Hyy is already in Schur triangular form (9.7), then go to
Step 3; otherwise let k = k + 1 and go back to Step 2b.

Step 3:  Based on (9.8) and (9.9),

Hi1 = Q) HiQr = Q) - O\ HI Q1 -+ Ok
Therefore the solution matrix U of (9.7) is

U=01 0k A [g; ZZ]}” (9.10)

A comparison of (9.7) and (9.3) shows that

P=Uy U/ (9.11)

To accelerate the convergence of Step 2 in the actual computation, the
Step 2b [or (9.8)] can be adjusted such that it becomes

O (Hi — sid) = Ry
and Step 2c [or (9.9)] can be adjusted correspondingly such that
Hk+l = Rka + sid

This adjusted version of Step 2 is called the “‘shifted version,” where s; is
determined by the eigenvalues (ay +jby, or a; and by) of the bottom right
2 x 2 corner block of H:

/12,17 1,2n—1 /’12”, 1,2n
/1211,2)171 h2n,2n
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The actual value of s; is recommended as [Wilkinson, 1965]

o= 4 W if ag +jby or if |ar — hopon| < |br — hon2a]
g b/m if |ak - h2n‘2n| > |b/c - h2n72n‘

It is clear that the main computation of Algorithm 9.1 is at Step 2b,
which is repeated within Step 2 until matrix Hy converges to the Schur
triangular form. From Sec. A.2, the order of computation of Step 2b using
the Householder method is about 2(2r)*/3 (the dimension of matrix H is
2n). Hence the computation required by Step 2 can be very complex.

Because of some special properties of Hamiltonian matrix H, it is
possible to half the dimension of H during the computation of Step 2. One
such algorithm [Xu, 1991] is described briefly in the following.

First compute H?, which is skew symmetrical (H?> = —(H?)"). The
Schur triangularization will be made on H?>.

Make elementary symplectic transformation on H? [Paige and Van
Loan, 1981] such that

H X

1721,
VHV—[O H

},(V’Vzl) (9.12)

where H, is in upper Hessenberg form (5.1). This is the key step of the
revised version of Step 2.

Make the Schur triangularization on matrix H;, which has dimension
n (instead of 2n). This is still the main computational step, with the order of
computation at each iteration equal to 2n°/3.

Finally, compute the square root of the result of the Schur
triangularization of H; [Bjorck and Hammaling, 1983] in order to recover
this result to that of the original Hamiltonian matrix H.

9.2 DESIGN OF GENERALIZED STATE FEEDBACK
CONTROL

Generalized state feedback KCx(f) is a state feedback with or without
constraint [for rank(C) < n or = n, respectively]. Therefore its design result
is weaker than that of state feedback if rank(C) < n but it can also equal
that of the state feedback if rank(C) = n.

Among the existing methods of this design [Levine and Athans, 1970;
Cho and Sirisena, 1974; Horisberger and Belanger, 1974; Toivonen, 1985;
Zheng, 1989; Yan et al., 1993], that of Yan et al. [1993] is briefly described in
the following because this result satisfies the above-stated generalized

properties:» Thissmethodsisscalledsthesgradient method.

Copyright 2004 by Marcel DekKer, Inc. All Rights Reserved.



This method is based on the partial derivative of J of (9.1) with respect
to K:

% = [RKC — BP|LC (9.13)

where P and L are the positive semi-definite solution matrices of the
following two Lyapunov equations:

P(4— BKC) + (4 — BKC)P=-CKRKC - Q (9.14)
and

L(A— BKC) + (A —-BKC)L=—P (9.15)

Based on this result, the gradient flow of K with respect to J is the
homogeneous differential equation

K = [BP— RKC|LC (9.16)

whose solution K can be computed by a number of numerical methods. The
simplest is the first-order “Euler method”:

Kin1 = K; + AKAt = K + ([B'P; — RK,C|L;C)At (9.17)

where AK; or P; and L; must satisfy (9.14) and (9.15) for the current K;, and
the initial constant values K, and interval Az should be set to guarantee the

convergence and the speed of convergence of (9.17) [Helmke and Moore,
1992].

Theorem 9.2.

Define J to be a set of finite J of K (9.1), (J(K)). In addition, the set J
includes the global and local minima of J(K). Then under the assumption
that J(Kj) is finite, the gradient method (9.14)—(9.16) has the following four
properties:

1. The gradient flow (9.16) has a unique solution K such that

J(K)ed.
2. The index J(K;) is nonincreasing with each increment of i.
3. lim, AK; =0 (9.18)

Copyright 2004 by Marcel DekKer, Inc. All Rights Reserved.



4. There is a convergent sequence K; to the equilibrium of (9.16)
whose corresponding J(K ) e J.

Proof
The proofs can be found in Yan et al. [1993].

In addition, the inspection of (9.13), (9.16), and (9.17) shows that when
Rank (C) =n,K = R-'B'PC ', which equals the optimal solution of state
feedback case K = R™'B'P (9.2) when C = I. Thus (9.16) and its solution
unify the result of the state feedback case of Sec. 9.1 as its special case.

Similar to the state feedback case, the main computation of (9.16)—
(9.17) is the solving of Lyapunov equations (9.14)—(9.15). There are a
number of such numerical methods available [Rothschild and Jameson,
1970; Davison, 1975]. The following is a method using Schur triangulariza-
tion [Golub et al., 1979].

Algorithm 9.2 Solving Lyapunov Equation AP + PA' = —Q

Step 1: Make a Schur triangularization of matrix 4:

Ay A ... Ay
0 A» ... A

vav=| . 77 (U'u=1  (9.19)
0 ... 0 A,

where 4; (i=1,...,r) are 1 x 1 or 2 x2 real matrix blocks.

The actual computation of this step is discussed in Step 2 of
Algorithm 9.1.

Step 2: Compute

On ... QO
vou=| : s
er s er

where-Qy-has;the;same-dimension as that of A, Vi, ;.
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Step 3: Replace 4, P, and Q of the Lyapunov equation by
U'AU,U'PU, and U’'QU, respectively, to get

U'AUU'PU + U'PUUAU=-UQU (9.20)
or
[ A1 A | | P Py, Py Py,
S+
0 A)r P)l Prr Pll Pr;
Ay 0 On 01
L Allr e A;l Qr] e er
Solving (9.20), we have for i=r,r—1,...,1 and
j=rr—1,..., L
Py, ifi<j
_ (A,',j -+ A/'j)_l Qi/' + Z Aikij + Z PikA;'k (fOI' scalar Aj]')
P = k=i+1 k=j+1 ' e
if i>]
— 10, + Z Ay Py + Z Pyl | (Aii + Aj) ™ (for scalard ;)
=i+l k=j+1
(9.21)

There are two possible formulas for the case i>; because
matrix blocks 4; and A can have different dimensions. In
this case the scalar block must be multiplied by I, before
being added to the other 2 x 2 block. These two formulas are
equivalent if both blocks are scalar. However, when both
blocks are 2 x 2, then the corresponding solution P; will be
the solution of a 2 x2 Lyapunov equation

AiiPy + Pydj; = =0y (9.22)
where Qj equals the matrix inside the square brackets of
(9.21). Because (9.22) is a special case of (8.1) [or the dual of

(4.1)], we can use the formula (8.3) for solving (8.1) to solve
(9:22) Fordosthisswedet P = [p; : p,] and O, = [q; : q,].
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Then
[L®A; + A;QDL][p) : p5] = —[q] : g5

can provide all parameters of P;.
Step 4:  Compare (9.20) with the original equation AP + PA' = —Q,

P11 Plr
P=U| : R
Py ... P,

The main computation of the above algorithm is still at Step 1 of
Schur triangularization. Although the matrix A — BKC [of (9.14) and (9.15)]
of this step has dimension # while the dimension of a Hamiltonian matrix of
Algorithm 9.1 is 2n, the entire Algorithm 9.2 has to be iteratively used within
another iteration loop of (9.17). Hence the generalized state feedback LQ
design is much harder than the state feedback LQ design.

9.3 COMPARISON AND CONCLUSION OF FEEDBACK
CONTROL DESIGNS

The order of computation of the design methods of Chaps 8 and 9 is
summarized in the following Table 9.1. As stated at the beginning of
Chap. 8, the designs of these two chapters determine fully the feedback
control and the corresponding feedback system loop transfer function. This
control and its loop transfer function are guaranteed of full realization by
the generalized output feedback compensator of this book.

It should be noted that orthonormal matrix operation is uniformly
used in the main step of each design algorithm. Hence the order of
computation of Table 9.1 is based on compatible assumptions and can
therefore reveal the relative difficulty of each design algorithm.

Although the actual number of iterations needed in each loop/layer
differs from problem to problem, it can be very huge (more than »n*) before
convergence to a reasonably accurate value (if convergent at all). This is why
applied mathematicians make great effort just to half the size of the
Hamiltonian matrix before let it go through iteration for Schur triangular-
ization (see the end of Sec. 9.1). Hence the computational difficulty is
determined by the number of layers of iteration, as listed in the middle
column of Table 9.1.
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Table 9.1 Computational Difficulties of Feedback Control Design Methods

Design methods for Number of layers of
A — BKC, where Ae R"*", iterations for Order of
BeR" P CeRI*N convergence needed in computation in
are given design algorithm each iteration
Pole assignment:
Compute (8.6) 0 (Algorithm 5.2) 4n®/3
Compute (8.4) 0 [see (A.20)] np(n — q)%2
Compute (8.20) (for
Algorithms 8.2 and 8.3) 2n%/3
Eigenvector assignment:
Analytical methods 0 0
Algorithm 8.2 1 n?2 to 2n°/3

Algorithm 8.3 1 4pn

LQ optimal control design:
State feedback case 2n%/3 to 2(2n)%/3
Generalized state feedback 2 2%/3

_

The middle column of Table 9.1 shows clearly that eigenstructure
assignment is much easier than LQ optimal design, and the state feedback
design is much easier than the generalized state feedback design.

Furthermore, it seems that the addition of each constraint equation to
the optimal criterion would result in one more layer of iteration for
convergence. For example, because of the addition of a simple constraint
equation K = KC, the generalized state feedback design for LQ has one
more layer of iteration than that of the state feedback design for LQ.

It should be noticed that under the new design approach of this book,
the dynamic part of the feedback compensator is fully determined in Chap.
6, while Table 9.1 deals only with the design of the compensator’s output
part K = KC. Thus the design of Chaps 8 and 9 is already much simplified
and much more specific than any design of the whole dynamic feedback
compensator.

This simplification should be general for the designs of control
objectives other than that of Chaps 8 and 9. For example, H,, design is
much more simplified and specific in either the state feedback case
[Khargoneker, 1988] or the generalized state feedback case [Geromel et
al., 1993; Stoustrup and Niemann, 1993]. Other optimal designs such as H,
[Zhou, 1992; Yeh et al., 1992] and L, [Dahleh and Pearson, 1987; Dullerud
and Francis, 1992] should have similar simplification and specification,
when applied to the design of KCx(¢) only.
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Out of so many design methods for KCx(t), each has claimed exclusive
optimality (the unique solution of one optimal design is not shared by the
other optimal designs), we recommend strongly eigenstructure assignment
because of the following two distinct advantages.

The first decisive advantage is at design formulation. Eigenvalues
determine system performance far more directly and generally accurately
(see Sec. 2.1), while the robustness properties of these eigenvalues are
determined by their corresponding ecigenvectors. Hence their assignment
should improve feedback system performance and robustness far more
directly and therefore effectively. For example, there is a whole subsection
(Subsection 8.1.1) dealing with the translation of system properties to the
eigenvalues.

In sharp contrast, there is virtually no general, analytical, and explicit
translation from these properties to the weighting matrices (except their
magnitude) of any of the optimal design formulations. There is no
consideration of open-loop system parameters into the weighting matrices
of any of these optimal design formulations either. The frequency response
measures of system properties are even less direct and generally accurate.
For example the bandwidth is far less generally accurate in reflecting system
performance (see Sec. 2.1 especially Example 2.2), while the robust stability
measures from the frequency response methods such as gain margins and
phase margins are far less generally accurate either (see Subsection 2.2.2). In
fact, the existing optimal design result is optimal only to the very abstractly
and narrowly defined criterion which does not reflect generally accurately
real system performance and robustness. This is further evidenced by the
very existence of more than one of these optimal definitions such as H,, H,,
and L;.

The second decisive advantage is at the ability to adjust the design
formulation from the final design results and simulations. In practice, there
can be no real good design without this feedback and adjustment. In this
book, eigenvalue selection (Subsection 8.1.1) and placement (Subsection
8.1.4) are adjustable, as well as the numerical eigenvector assignment
(weightings to each eigenvector) and the analytical eigenvector assignment
(see Example 8.7). In addition, the feedback compensator order of our
design is also fully adjustable for the tradeoff between the control strength
and the degree of realization of robustness properties of this control (see
Sec. 6.4).

From the middle column of Table 9.1, the computation of the solution
of LQ optimal design formulations requires iteration for convergence.
Notice that even more layers of iteration for convergence are required by
some optimal designs other than the LQ optimal design, such as the state
spacenversionsof wHmedesignawheresseveral Riccati equations are to be
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satisfied simultaneously [Zho et al., 1995]. This kind of design computation
not only is difficult to implement in practice, but also loses the track between
the design formulation and the numerical design solution. Thus in optimal
designs, the automatic, general, intelligent, and analytical adjustment of the
design formulation (from the design solution) is virtually impossible, even
though these design formulations are too abstractly and narrowly defined to
truly reflect real system performance and robustness.

We believe that these two distinct advantages are also the main
reasons that made the state space theory prevalent over the previously
prevalent and loop transfer function—based classical control theory in the
1960s and 1970s (eigenvectors can be assigned only based on state space
models and only by state/generalized state feedback control). The problem
with the state space theory is not at its form of control KCx(t), but at the
failure to realize this control especially its robustness properties (generating
the signal KCx(t) is not enough). Now this failure is claimed overcome
decisively by the design of this book (Chap. 6).

EXERCISES
9.1 Let the system be

0 1 0
A= { 0 0} and B= [ 1 ]
Design state feedback K such that the quadratic criterion (9.1) with
4 0

0= [0 0] and R =1 is minimized

Answer: K =[-2 =2].
9.2 Repeat 9.1 for a different quadratic criterion (9.1):

J= / (231 (02 + 251 (a0) + 320 + u(r)?]
0
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9.3 Repeat 9.1 for a different quadratic criterion (9.1):

J= / )+ 2u(r) }dt (Given y(t) = Cx(1) = [1  2]x(¢))
0

Hint:Q=CC

9.4 Let the system (A4, B, C) be the same as that of 9.1 and 9.3. Design a
static output feedback gain K for the three criteria of 9.1 to 9.3,
respectively.

9.5 (a) Randomly generate five 10 x 10 matrices. Calculate the Schur
triagularization (Step 2 of Algorithm 9.1) and notice the average
computational time.

(b) Repeat Part (a) by five 9 x9 matrices. Compare the average
computational time with that of Part (a) to see the effect of
increasing the matrix size from 9 to 10.

(c) Repeat Part (a) by ten 5x5 matrices. Compare the average
computational time with that of Part (a) to see the effect of
doubling the matrix size from 5 to 10.

-
» |
ol *']h. (Yt 2L ’:E L’ﬂ g
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10

Design of Failure Detection, Isolation, and
Accommodation Compensators

Failure detection, isolation, and accommodation has been an important
control system design problem for some years. Whereas the control systems
analyzed and designed in the previous chapters deal with minor model
uncertainty and disturbance which are less serious and occur often, the
control system of this chapter deals with major failure and disturbance
which are severe but occur rarely.

Therefore, if the normal control system is designed to have general
robustness properties regardless of specific model uncertainty and dis-
turbance, then the control system of this chapter is designed to
accommodate-somespecific-failure-situations based on their detection and
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diagnosis. It is ironic that the strength of failure signals makes their
detection and diagnosis relatively easier.

Failure detection, isolation, and accommodation problems are
specialized with regard to each specific failure situation. The results are
diverse and are summarized in survey papers such as Frank [1990] and
Gertler [1991].

This chapter introduces only a specific failure detection, isolation, and
accommodation controller and its design algorithm, which have been
published in [Tsui, 1993c, 1994b, 1997].

This controller can be designed systematically and generally, can
detect and isolate failure very quickly and specifically, can accommodate
failure very quickly, generally, and effectively, and can consider minor plant
system model uncertainty and output measurement noise. In addition, the
failure signal is generally and specifically modeled so that it corresponds to
each plant system state, and the controller has very compatible structure
with the normal dynamic output feedback compensator of the rest of this
book. Therefore, the normal and failure controllers of this book can be
designed, connected, and run coordinatively.

There are three sections in this chapter. Section 1 deals with failure
detection and isolation, which are essential to the entire controller. The
analysis and design formulation of this subject have been made before, but
their truly successful design was reported only in Tsui [1989]. Section 2
introduces adaptive failure accommodation, which is uniquely enabled by
the failure detection and isolation capability of Sec. 1. Section 3 deals with
the effect and corresponding treatment of model uncertainty and measure-
ment noise during failure detection and isolation.

10.1 FAILURE DETECTION AND ISOLATION
10.1.1 Problem Formulation and Analysis

In this book, system failure is modeled as an additional signal d(7) to the
plant system’s state space model (1.1a):

x(1) = Ax(t) + Bu(t) + d(2) (10.1)

We name d(z) “failure signal.” If failure is free, then d(z) =0 (or is
sufficiently small). If failure occurs, then some among the n elements of d(7)
become nonzero time functions.

Because (1.1a) is a combined description of n system states (or system
components), and each system state (or component) is described mainly by
itsscorresponding-first-ordersdifferential equation in (1.1a) or (10.1), we
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identify each element of failure signal d(7) to its corresponding system state
component. For example, the nonzero occurrence of the i-th element of d(?)
implies the failure occurrence to the i-th system state component, which will
then be called as a “failed state.” The nonzero elements of d(z) are not
presumed to have any specific waveform. Hence this failure description is
very general.

Failure detection and isolation in this chapter are used to detect the
nonzero occurrence of d(z) and isolate which element of d(¢) is nonzero. In
practice, the second purpose is much harder to achieve than the first.

Like observers, the failure detection and isolation are achieved by
using the information of plant system inputs and outputs. However, a set of
independent but coordinatively designed failure detectors are designed. The
number of failure detectors is determined by

where n is the plant system order, and ¢ must be less than the number of
plant output measurements m. This requirement of ¢ is drawn from the
design feasibility, as will be shown in Step 2 of design algorithm 10.1 in the
next subsection.

Parameter ¢ also indicates the maximum number of simultancous
nonzero elements of d(7) (or the number of simultaneous component
failures) this set of failure detectors can isolate. This failure detection and
isolation capability is achieved based on the following special properties of
the failure detectors.

Each of the k failure detectors has the following structure

ii(t) = F,'Z,'(I) + Lly(f) + TiBu(t) (1033)
ei(t) = nz;(1) + m;y(1) i=1,....k (10.3b)

where the single output ¢;(¢) is called the “residual signal.”” It is required that
the residual signals all be zero if failure is free (d(¢) = 0). It is also required
that for each possible set of nonzero elements of d(¢), a unique and preset
zero/nonzero pattern among the k residual signals be produced. Thus the
occurrence of a set of nonzero elements of d(z) is detected and isolated
instantly once its corresponding zero/nonzero pattern of residual signals is
formed.

To satisfy the above requirement, it is required by our design that each
of the k residual signals must be zero when its corresponding and preset set
of g-state;componentsshas-failedszand-must be nonzero for any of the other
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state component failures. We therefore name the failure detectors of (10.3)
“robust failure detectors” because each of them is robust (or insensitive)
toward its corresponding set of ¢ state component failures. This way, up to ¢
simultaneous state component failures can always be detected and isolated.

Example 10.1

Let a plant system have four states and three output measurements (n = 4
and m = 3). We will analyze the following two cases for (A) ¢ = 1 and (B)
q = 2(q < m = 3), respectively.

(A) ¢ =1: From (10.2), four robust failure detectors are needed.
Each failure detector must be robust to ¢ (= 1) state component
failure.

In Table 10.1, the symbol “X” represents nonzero and is
regarded as “1” (or “TRUE”) in the third column of logic
operations, and “N” stands for the “AND” logic operation. It is
clear that if the residual signals behave as desired, each one of the
four state component failures can be isolated.

(B) ¢ = 2: From (10.2), six robust failure detectors are needed. Each
failure detector must be robust to ¢ (=2) state component
failures.

The logic operation of Table 10.2 can isolate not only one
failure as listed, but also two simultaneous failures. For example,
the failure situation of d, () #0 and d,(#) #0 can be isolated by its
unique residual signal pattern e; Ne; Neg Nes N eg.

The above design idea can easily be extended to the case where among
n state components, only p state components can fail. The only adaptation

Table 10.1 Isolation of One State Component Failure for a Four-State
Component System

Failure situation Residual signals

dit)=[d1 drdsdy) e e e e Logic policy for failure isolation
d1(t)750 0 X X X (d1(t);£0)—egﬂegﬂe4
do(t)#0 X 0 X X (d2(t)#0) =e1NeszNes
d3(t)#0 X X 0 X (dg(t)?éO) =ei1Nexney
d4(t)750 X X X 0 (d4(t)750) =einNeynes
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Table 10.2 Isolation of Up to Two State Component Failures for a Four-
State Component System

Failure situation Residual signals Logic policy for failure
dit)=[d1 dr dzds) e e e e e e isolation

d’|(t)9é0 0 0 0 X X X (d1(t);é0):e4ﬂesﬂe6
dy(t) #0 0 X X 0 0 X (d2(t)#£0)=exNesNeg
d3(t)7éo X 0 X 0 X 0 (dg(t)7é0)=e1ﬂe3ﬁe5
d4(t)9é0 X X 0 X 0 0 (d4(t)$ﬁ0) =e1Neneg

for this case is to design a combination of p over ¢ robust failure detectors
[instead of a combination of n over ¢ as in (10.2)].

From the above analysis, the key to the success of this failure detection
and isolation scheme is the generation of the desired zero/nonzero residual
signal patterns. This difficult yet essential requirement is analyzed by the
following theorem.

Theorem 10.1

To achieve the desired properties of robust failure detectors, each detector
parameter (F;, T;, L;, n;, m;, i = 1,... k) must satisfy the following four
conditions [Ge and Fang, 1988]:

l. T:A— F,T; = L;C (F; is stable)

(so that z;(1) = Tix(¢) if d(z) =0)

. 0=nT;+m,C (so that ¢;(r) =0 if d(r)=0) (10.5

3. The ¢ columns of 7; = 0 [so that ¢;(¢) still = 0,

even if the corresponding ¢ elements of

d(7) #0] (10.6)
4. Each of the remaining n — g columns of 7;#0

[so that e;(r) #0, if any of the remaining n — ¢

elements of d(7)#0) (10.7)

The statements inside parentheses describe the physical meaning of the
corresponding condition.
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Proof

Condition (10.4) and its physical meaning have been proved in Theorem 3.2.
Although the eigenvalues of F; can be arbitrarily assigned, they should have
negative and sufficiently negative real parts to guarantee convergence and
fast enough convergence from z;(¢) to Tix(z).

Condition (10.5) is obviously necessary and sufficient for ¢;(¢) = 0,
based on (10.3b) and on the assumption that z;(¢) = T;x(f) and
y(1) = Cx(1).

When d(7) #0, (10.4) implies (see the proof of Theorem 3.2)

(1) — Tix(1) = Filz:(1) — Tix(1)] — Td(7) (10.8)

or
z;(1) — Tx(1) = — / eI Tyd(7) dr (10.9)

where 7 is the failure occurrence time and it is assumed [from (10.4)] that
zi(to) = Tix(to).

From (10.9), (10.6) [T;d(t) = 0 V7 and for the ¢ nonzero elements of
d(7)] guarantees that z;(¢) still equals 7;x(¢) at ¢ > ty. Then (10.3b) and
(10.5) guarantee that e;() still equals 0 at 7 > f.

Equation (10.9) also implies that if (10.7) [or T:d(t)#0] holds, then
z;(1) — Tix(t) #0 at t > ¢, generally. Consequently, (10.3b) and (10.5) imply
e;i(t)#0 at t > to for most cases.

Together, the physical meanings of the four conditions imply the
satisfaction of the required properties of robust failure detectors.

10.1.2 Design Algorithm and Example

The failure detection and isolation problem having been formulated as the
four conditions of Theorem 10.1, the real challenge now is sow to design the
robust failure detectors (F;, T;, L;, n;, m;, i =1,... k) which can satisfy
(or best satisfy) these four conditions.

The inspection of the four conditions (10.4)—(10.7) shows that
parametersZmisstheskeysparameterswhich uniquely appears in all four
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conditions. The solution 7; of (10.4) has already been derived in Algorithm
5.3 of Chap. 5 with many design applications as listed in Fig. 5.1. Hence the
remaining three conditions (10.5)-(10.7) can be considered as another
application of this solution of (10.4).

Based on the distinct advantages of the solution of (10.4) of Algorithm
5.3, a really systematic and general design algorithm for (10.4)—(10.7) is
developed as follows [Tsui, 1989].

Algorithm 10.1
Computation of the solution of (10.4)—(10.7)

Step 1: Set the robust failure detector orders r; =
n—m+1({=1,...,k), and select the eigenvalues of F;
according to the corresponding proof of Theorem 10.1. Then
use Step 1 of Algorithm 5.3 to compute the basis vector
matrix D; e R"*" for each row t;; of the solution matrix 7; of
(10.4). Thus

tij:cljDij (j:l,...,r,-,izl,...,k) (1010)

where ¢;; € R"™ are completely free.
Step 2: Compute ¢;; so that

¢;j[the ¢ columns of D]
i=1,....k

0 jzl,...,r,«,

mxq —

(10.11)

is satisfied, where the ¢ columns are preset for the i-th
failure detector (such as in Table 10.2). The nonzero
solution ¢; of (10.11) always exists because g is set to be
less than m.
Step 3: Compute (10.10). Then use Step 3 of Algorithm 5.3 [or (5.16)]
to compute L;.
Compute the failure detector parameters m; and m; to
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satisfy

ci1Dj
: }Vi
[Il,' : m,-] ciriDiri =0 (1012)
C tm

Because the matrix of (10.12) has n columns, the nonzero
solution [n; : m;] of (10.12) always exists for r; =n —m+ 1.

It is obvious that (10.10)—(10.12) of the above algorithm guarantee
conditions (10.4), (10.5), and (10.6), respectively. This algorithm is based on
Algorithm 5.3 which satisfies (10.4), and then uses the remaining freedom of
(10.4) (or the remaining design freedom of the dynamic part of robust failure
detector ¢;;) to satisfy (10.6). The design freedom (n; and m;) of the output
part of robust failure detector has been fully used in (10.12) to satisfy (10.5).

However, experience shows that for many plant systems, (10.7) cannot
be satisfied for all k failure detectors after (10.4)—-(10.6) are satisfied,
especially when ¢ is set at its maximum possible value m — 1.

The reason for this situation can be explained as follows. First of all,
(10.6) is equivalent to equation 7;B; = 0, where B; is an n x ¢ dimensional
matrix which picks ¢ columns (out of n columns) of 7;. Secondly, because
(10.6) implies that at least ¢ columns of 7; will be zero, (10.7) requires the
rows of 7; be linearly independent of each other. Now these two modified
requirements of (10.6) and (10.7), together with (10.4), form the design
requirement of unknown input observers which do not generally exist (see
Sec. 4.3). It is even harder for an exhaustive k combinations of failure
detectors (corresponding to k different combinations of B; matrices) to
generally exist.

As shown in Sec. 6.2, this book has presented the first general and
systematic design solution of (4.1) and (4.3), which are equivalent to (10.4)
and (10.6). Hence Algorithm 10.1 also has generally satisfied (10.4) and
(10.6) for the first time (provided that m > q).

Fortunately, (10.4) and (10.6) are, in fact, the most important and
most difficult requirements among the four requirements of Theorem 10.1,
because (10.5) can always be satisfied by detector parameters [n; : m;] for
sufficiently large r; [see (10.12)], while at least some nonzero columns of
(10.7) always appear automatically. Therefore, even if the k exact solutions
of (10.4) to (10.7) (for i = 1,...,k) do not all exist, simple adjustment can
easily be made, based on the general solution of (10.4) to (10.6) of
Algorithm 10.1, to construct a system with partially fulfilled failure
detection and isolation capability.
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Example 10.2 [Tsui, 1993c]

Let the plant system be

—20.95 17.35 0 0
66.53  —65.89 —3.843 0
(A, B, C): 9
0 1473 0 —67,420
0 0 —0.00578 —0.05484
(1) 1 0 0 O
ol-10 1t oo
0 0 0 0 1

This is the state space model of an actual automotive powertrain system
[Cho and Paolella, 1990]. The four states are engine speed, torque-induced
turbine speed, driving axle torque (sum of both sides), and wheel rotation
speed. The control input is an engine-indicated torque. This example will be
used throughout this chapter.

Because m =3, we let ¢ =m — 1 =2. Thus a total of k = 6 robust
failure detectors will be designed by Algorithm 10.1 and according to
Table 10.2.

In Step 1, we let r;,=n—m+1=2 and let the common dynamic
matrix of the six failure detectors be randomly chosen as

~10 0 .
F"_[ 0 —20.7322]’ =16

Following Step 1 of Algorithm 5.3 (5.10b), the r; (= 2) basis vector
matrices are common to all six failure detectors as

0.3587 0.8713  0.0002 0.3348
D;; = | —0.0005 0.0002 1 —0.0005 |, i=1,...,6
—0.9334 0.3348 —0.0005 0.1287
and
0.1741 0.9697 0 0.1715
Dy = | —0.0003 0 1 —0.0003 |, i=1,...,6
—0.9847 0.1715__—0.0003 0.0303
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Because the given form of matrix C differs from the C of the block-
observable Hessenberg form (5.5) by a column permutation [the last n — m
column of C of (5.5) becomes the third column in this C], the D; matrices
are computed based on the third column of matrix (4 — 4;I), instead of on
the last n — m column according to (5.10D).

In Step 2 of Algorithm 10.1, the solution of (10.11) corresponding to
each of the six sets of ¢ zero-columns of Table 10.2 is:

(ci1, e12) = ([0 —1 0.0006], [0 —1 0.0003))

(ca1, €2) = ([0.0015 1 0], [0.0015 1 0])

(c31, €32) = ([0.9334 0 0.3587], [0.9847 0 0.1741])

(car, €42) = ([—0.3587 0.0005 0.9334], [—0.1741 0.0003 0.9847))
(cs1, €52) = ([—0.3587 0.0005 0.9334], [—0.1741 0.0003 0.9847))
(co1, €e2) = ([—0.3587 0.0005 0.9334], [—0.1741 0.0003 0.9847))

The inspection of the above result shows that the last three failure detectors
are redundant and can therefore be simplified to only one. So only four
failure detectors (i = 1,...,4) will be computed.

In Step 3, compute 7; according to (10.10) (i =1,...,4). Then the
corresponding L; can be computed based on all columns of Eq. (10.4) except
the third column (i = 1,...,4) (see the explanation before the result of Step
2). The result is:

;[0 0 00006 1 [0 08529 —29.091
"“1lo 0 00003 1 "o 03924 3715

T,=[0 00015 0 —1]  L,=[0.1002 —0.0842 —9.9451]

B {O 0.9334 0.3587 O} B {62 476 24, 185}
710 09847 0.1741 0 T le6 213 —11,740
and
T,=[-1 -0 0 -0] Ly,=[1095 -17.35 0]
In the above result, the two rows of matrix 7; (i = 2,4) are the same. Hence
we have adjusted r; = 1, F; = —10, and parameters [T; : ;] as the first row

of their original values, for i = 2 and 4, respectively.
It-cansbeverifiedsthat:(10:4)sand+(10.6) are satisfied.
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In Step 3 of Algorithm 10.1, we solve (10.12) such that

[y :my] =[0.3753 —0.8156:0 0 0.4403]
[y :my) =[0.7071:0  —0.0011 0.7071]
[y :ms] =[0.394 —0.8116:0 04314 0]

and
[n4:m4]:[1:l 0 0]

It can be verified that (10.5) is also satisfied with this set of parameters.

However, condition (10.7) of Theorem 10.1 is satisfied only for
i=1,2,3. For i =4, there are three zero columns in matrix 7;, and the
requirement (10.7) of Theorem 4.1 that there are n— ¢ (=2) nonzero
columns in 7; is not met. As a result, the desired properties of Table 10.2
cannot be fully achieved. Instead, we simply adjust our design and Table 10.2
to have the following partially fulfilled failure isolation capability.

It can be easily verified from Table 10.3 that the three pairs of
simultaneous state component failures (d; and d», d; and d3, and d) and dy)
can be isolated by the logic operation of Table 10.3. These three failure
situations are isolated by e; Ne3 Neyg,e; Ne3 Ney, and e; Ney N ey, rEspec-
tively. However, the other three possible pairs of two simultaneous failures
(dy and ds, dy and dy, and ds and d,) cannot be isolated. In these three cases,
eq 18 zero, but all other three residual signals are nonzero. Hence one can
learn from this residual signal pattern only that all elements of d(¢) except
d (1) can be nonzero, but one cannot isolate which two state failures among
the three are occurring.

Considering the difficulty of instant isolation of all possible pairs of
two simultaneous unknown state component failures of this four-state
system, the above failure isolation capability of Table 10.3, though not as
good as Table 10.2, is still remarkable.

Table 10.3 Failure Isolation of Example 10.2

Failure situation Residual signals

d(t) = [dy do ds dy] e e, es e Logic policy for failure isolation
dqi(t)#0 0 0 0 X (dqh(t)#0) = e,

dy(t)#0 0 X X 0 (da(t)#0) = e; N e

d3(t) #0 X 0 X 0 (d3(t)#0) =e1Nes

d4(t)750 X X 0 0 (d4(t)750) =ei1Nne;
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The above failure isolation capability of Table 10.3 is still better than
that of Table 10.1, where g is set to be 1, because the system of Table 10.3
can isolate three additional pairs of two simultaneous failures, whereas the
system of Table 10.1 cannot. Hence a large ¢ (< m) may be generally
recommended even though the isolation of all situations of ¢ simultaneous
state component failures may be impossible. The value of g should also be
chosen such that k& of (10.2) (and the amount of failure detector design
freedom) is maximized.

10.2 ADAPTIVE STATE FEEDBACK CONTROL FOR FAILURE
ACCOMMODATION [Tsui, 1997]

The purpose of detecting and diagnosing disease is to apply the
corresponding and appropriate cure to that disease. Likewise, the purpose
of failure detection and isolation is to apply the corresponding and
appropriate control to that failure situation. Conversely, a really effective
failure accommodation control must be adaptive according to each failure
situation.

The failure accommodation control of this chapter is realized by the
feedback of two signals—the states z;(z) of the robust failure detectors (i =
1,...,k) and the plant system output measurements. The feedback gain is
adaptive based on the particular and isolated failure situation. We therefore
call this control “adaptive.” It is obvious that the static feedback gains of
this chapter can be most easily and quickly adapted, in either design or

implementation.
From Theorem 10.1, the failure detector states z;(r) should equal
Tx(t) (i =1,...,k) before failure occurs. According to the design of robust

failure detectors, when ¢ or less than ¢ state components fail, there is at least
one robust failure detector whose state [say z;(¢)] still equals 7;x(7). In
addition, some elements of the plant system output measurement y(z) can
also be robust to (or independant of) the failed system states. Both signals
are reliable and can be used to control and accommodate the failure.

As discussed in Sec. 4.1, the static gains on z;(¢) and y(7) can be
considered as state feedbacks (or constrained state feedbacks). We therefore
call the failure accommodation control of this chapter ‘“adaptive state
feedback control.” From the argument of Subsection 2.2.1, the state
feedback control is the most powerful among the general forms of control.

This control is uniquely enabled by the information (in both failure
isolation decision and plant system state estimation) provided by the failure
detection and isolation system of Sec. 10.1.

There-are-distinctradvantagessof-this failure control scheme.
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(a) It is very effective. First of all, the state feedback control is most
generally powerful. Secondly, this control is specifically adapted
toward each isolated failure situation. Finally, this control is very
timely. The failure detection and isolation is instant when the
zero/nonzero pattern of residual signals is formed upon failure
occurrence. The generation of the corresponding control signal,
or the switching on of the corresponding static gains on the
available signals z(7) and y(¢), can also be instant.

(b) It can be very easily and simply designed and implemented. The
static gains can be designed off-line and can be switched around
on-line without worrying about the initial conditions and the
transients of the controller.

Finally, it is obvious that this adaptive failure control scheme is
uniquely enabled by the failure isolation capability of Sec. 10.1.

Example 10.3

Based on the design result of Example 10.1, the ten isolatable failure
situations and their respective unfailed plant system states and feedback
control signals are listed in Table 10.4.

In Table 10.4, the feedback gain K; is designed based on the
understanding of the corresponding failure situation S; (i=1,...,10).
The signal ¥,(¢), which must be robust to the failed system states of the
corresponding failure situation S; (i = 1,...,10), can be wholly, partly, or

Table 10.4 Ideal Adaptive Failure Control for a Fourth-Order System with
Up to Two Simultaneous State Component Failures

Failure situation Unfailed states Control signal
S1 d1(t)$ﬁ0 Xz(t)7X3(t),X4(t) K1[Z/1 :Z/Z:Zé,,'vcl],
Sy:dy(1) #0 x1(1), xa(1), x4 (1) Koz, 2, 25,
S3:d3(t)#0 x1(t), X2(t), Xa(t) K[z :2, 1z 7/3]/
S4:d4(t)$ﬁ0 X1(t)7X2(t),X3(t) K4[Z/3:Zg:Z/6 Vil],
Ss5:di(t)#0, da (1) #0 x3(t), Xa(1) Al
ngd1(t)9é0,d3(t);é0 X2(t),X4(t) KG[leiVé;}/
S7:d1(t)$ﬁ0,d4(t)§é0 Xz(t)7X3(t) K7[Z/3:V,7}/
Sg:dy(t)#0, d3(t) #0 x1(t), Xa(1) Ks[z), : ¥
So:dy(t)#0,ds(t)#0 x1(t), x3(t) Ky Zglv/gy
S1o:d3(t)7é0,d4(t)7é0 X1(t)7X2(t) K10[Z%:V/10]/
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not part of the output y(¢). The actual design of K; is introduced generally in
Chaps 8 and 9.

In actual practice, all six robust failure detectors run simultaneously
and all six detector states are available all the time (so are the plant system
output measurements). Once a failure situation S; is detected and isolated (it
must be one of the ten in Table 10.4), the corresponding control signal (with
gain K; according to Table 10.4) will automatically be switched on.

Example 10.4 Failure Accommodation for the System of
Example 10.2

The failure isolation capability of Table 10.2 is not as fully achievable in
Example 10.2 as in Example 10.1. For such cases, Table 10.4 (which
corresponds to Example 10.1 and Table 10.2) must be adjusted as follows.

First, all redundant failure detectors and their respective states zy4, Zs,
and z¢ are reduced to z4 only.

Second, the failure situations S; (i = 8,9, 10) cannot be isolated and
hence cannot be specifically controlled.

Third, for the speciﬁc case of Example 10.2, the ¥,(¢) signals of
Table 10.4 (i =1,...,7) can be specified as follows:

2(0) y(0] V() =[n(0) w0
) V() =[n() »n@]
s()=y3()  Ve(O) =[32(0) y3()] ¥1(2) = 32(0)

In making the actual failure accommodation control signal, we also
make sure that the signals used to produce this control are linearly
independent (or not redundant) of each other. When two signals are
redundant, the output measurement signals [y;(r)’s] should be used in
priority against the failure detector states [z;(¢)'s] because the former are
more reliable as linear combinations of plant system states. For example,
24(1) = T4x(1) is linearly dependent on y;(#) and will therefore not be used if
»1(1) is used.

Finally, if there are enough unfailed plant system states available for
failure control, an additional adjustment can also be made to Table 10.4 as
follows. This adjustment can be most important.

Among the unfailed plant system states some may be more strongly
influenced by the failed states than others. These unfailed plant system states
are therefore less reliable than the others for failure control and should not
besusedstosgenerate-failure;accommeodation control signals.
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This idea can be easily implemented because the coupling between the
system states is very clearly revealed by the system’s dynamic matrix 4. For
example, the magnitude of the element a; of matrix 4 indicates how
strongly state x; is influenced by state x;.

Example 10.5
In the completely adjusted failure accommodation control for Example 10.2,
where
-20.95 17.35 0 0
A 66.53 —65.89 —3.843 0
o 0 1437 0 —67,420
0 0 —0.00578 —0.0548

Matrix A4 indicates, for example, that state x3 is strongly influenced by state
X4 because |ass| = 67,420 is large, while state x4 is weakly influenced by state
x3 because |as3] = 0.00578 is small (matrix A4 is not symmetrical).

Based on the above understanding, we list the specific failure control
for the plant system of Example 10.2 in the following. We use three different
thresholds (10, 100, and 1) to judge whether a state is strongly influenced by
another. For example, if the threshold is 10 in Example 10.2, then matrix 4
indicates that state x; is strongly influenced by x, (|a;2| = 17.35 > 10), while
xy is weakly influenced by x3 (|a3| = 3.843 < 10). Thus for the three
different thresholds, there are three corresponding tables (Table 10.5 to
10.7) which are adjusted from Table 10.4.

In Tables 10.5 to 10.7, the most used information for failure control is
from y(#) and one may wonder what is the use of the failure detector. The
cause of this fact is that in this particular example m is large compared to n.
In more challenging problems where m is small compared to n, the
information of z(z) will be the main source for failure control.

In the failure situation S; of Table 10.5, state x, is considered weakly
influenced by the failed states (x; and x4) even though the actual influence
from x; is still quite strong (Jaz;| = 66.53 > 10). This is because the only
other unfailed state xj3 is even more strongly influenced by the failed state x4.

The difference between Table 10.6 and Table 10.5 is for failure
situations Si, S», and Sg. Table 10.6 adds x», x1, and x; as states which are
weakly influenced by the failed states for these three failure situations,
respectively. This is because the corresponding elements of these states in
mattixeAd(66:535:17:35and-66:53;wespectively) are less than 100. Thus the
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Table 10.5 Failure Accommodation Control for Example 10.2
(With Threshold for State Coupling Strength Set as 10)

Failure situation

Unfailed
system states

States weakly
Influenced by
failed states

Adaptive failure
control signal

Sy

!d1 #0
Sz:
33:
84!
55:
36:
87!

dr 20
ds £0
ds #0
d1#0,d2 #0
d1#0,d3 #0
d1#0,ds #0

X2, X3, X4
X1, X3, X
X1, X2, X
X1, X2, X3
X3, Xa
X2, X4
X2, X3

X3, X4

X4

X1, X2, Xa
X1, X2

X4

Xa

X2

Ki[Z,: ya)
Kays(t)
Kay(t)'
Kalyr:y2)
Ksys(t)
Ksys(t)
K7 YZ(t)

control signals for these failure situations are based on more information,
although this additional information is less reliable.
The difference between Table 10.7 and Table 10.5 is at failure situation
S3, where state x; is no longer considered weakly influenced by the failed
state (x3) in Table 10.7. This is because the corresponding element

|a23| =3.843 > 1.

Among the seven isolatable failure situations, S7 has the least reliable
information according to our formulation.

Table 10.6 Failure Accommodation Control for Example 10.2

(With Threshold for State Coupling Strength Set as 100)

States weakly

Unfailed influenced by Adaptive failure
Failure situation system states failed states control signal
Si:di #0 X2, X3, Xa X2, X3, Xa Ki[Zy:y2:ya)
Sy:dy #£0 X1, X3, Xa X1, Xa Kalyr:ys]
S3:d3#0 X1, X0, Xa X1, X2, Xa Ks:y(t)
S4Zd4 750 X1, X2, X3 X1, X2 K4[y1 :yz]/
Ss:dy,dy #0 X3, Xa Xa K5y3(t)
Se:di,ds #0 X2, X4 X2, X4 Kely2: ys]
S7Zd17d47é0 X2, X3 X2 K7)/2(t)
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Table 10.7 Failure Accommodation Control for Example 10.2
(With Threshold for State Coupling Strength set as 1)

States weakly

Unfailed influenced by Adaptive failure

Failure situation system states failed states control signal
Si:di #0 Xo, X3, X4 X3, Xa Ki[Z} : ya]

Sz:dz 750 X1, X3, Xs Xa Kz)/3(t)

53:d3 7é 0 X1, X2, Xa X1, X4 Kg[y1 :)/3],

Sy:ds #0 X1, X2, X3 X1, Xa Kalyr:ya2)
851d1,d2 7&0 X3, X4 Xa K5)/3(t)
Se:d,d3 #0 X2, Xa X4 K5y3(t)
S;:d,ds #£0 X2, X3 X2 K7y2(t)

10.3 THE TREATMENT OF MODEL UNCERTAINTY AND
MEASUREMENT NOISE [Tsui, 1994b]

In the previous two sections, a complete failure detection, isolation, and
accommodation control system is established. This section discusses the
effect and the corresponding treatment of plant system model uncertainty
and output measurement noise on the failure detection and isolation part of
that system.

To do this, we need to analyze the overall feedback system. It is
striking that robust failure detectors (F;, T;, L;, i=1,...,k) and failure
accommodation control of Tables 10.4-10.7 are compatible with the
feedback compensator (Fy, Ty, Lo) (3.16) in structure. As a result, the
normally (assuming failure-free) designed observer feedback compensator
(3.16) of Chaps 5 through 9, and the failure detection, isolation, and
accommodation system of the previous two sections can be connected in
parallel and implemented coordinatively. The combined system can be
illustrated in Fig. 10.1, which shows a combined system with a normal
feedback compensator and a failure detection, isolation, and accommoda-
tion compensator,

where
r(t) A external reference input
d(z) A failure signal
n(z) A output measurement noise signal with 72 as the upper bound of

its rms value B
C(sI — A) " A(s) A plant system model uncertainty with A as the
upper bound of scalar function A(s)
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Figure 10.1 Combined system with a normal feedback compensator and a
failure detection, isolation, and accommodation compensator.

and for k =n!/[(n — q)'q!|(¢ = m — 1) of (10.2),

e(r) A fey (1) -~ ex(r)]" A residual signal vector
(1) & fzo(0) (1) - (1))
diag{Fo, Fl, e ,F/C}

F
N A diag{ny,...,ng}(mg = 0)

and
Ty Ly
m;
T, L
T A LA M A (my A 0)
. . - my -
T Ly ¢

The feedback gain [K : K] is normally applied to zy(¢) and y(¢) only,
but will be adapted when failure is detected and isolated (see Tables 10.4—
10.7 for example). Thus [K7 : K,] is modeled as the gain to the entire z(7)
and y(¢) signals.

Because failure detection and isolation is achieved based on the zero/
nonzero pattern of the residual signals (see Tables 10.1-10.3), the effect of
model uncertainty A(s) and measurement noise n(7) is reflected in the zero/
nonzero determination of these residual signals.

To analyze this effect, we must first derive the transfer function
relationship=between=A(s)s:NV(s)sR(s); and D(s) to E(s), where N(s),

Copyright 2004 by Marcel DekKer, Inc. All Rights Reserved.



R(s),D(s), and E(s) are the Laplace transforms of n(z),r(z),d(¢), and e(z),
respectively. In addition, we also let X(s), U(s), Y(s), and Z(s) be the
Laplace transforms of their respective time signals x(¢),u(z),y(¢), and z(z).

Theorem 10.2 [Tsui, 1993c]

For small enough A(s), the transfer functions from A(s), N(s), R(s), and
D(s) to E(s) are:

E(s) = Ho()A(s)R(S) + Hea(s)[1 + A(s)]D(s) + Hen(s)N(s)  (10.13)

A Ey(s) + Ea(s) + Eq(s) (10.14)

where the transfer functions H,,(s), H.4(s), and H,,(s) are fully determined
by the parameters of Fig. 10.1.

Proof

Let G,(s) & C(sI — A)"" and G(s) & (sI — F)"". Then from Fig. 10.1,

Y (s) = Go(s)[1 + A(s)][BU(s) + D(s)] + N(s) (10.15)
U(s) = KzZ(s) + K, Y (s) + R(s) (10.16)
Z(s) G.(s)[TBU(s) + LY(s)] (10.17a)
Gu(5)U(s) + Gy(s) Y (5) (10.17b)

and
E(s) = NZ(s) + MY(s) (10.18)

Substituting (10.16) into (10.17b), then

-
» |
ol *']E. (Yt 2L ’:E L‘ﬂ g



Now substituting (10.19b) into (10.16) and then into (10.15),

Y (s) ={I — G,(s)[1 + A(s)|B[KzH.,(s) + K,]} '
{Go($)[1 + A()[B(KZH.(s) + I)R(s) + D(s)] + N(s)}

for small enough A [Emami-Naeini and Rock, 1988],

~{I = G, () BIKzH., (5) + K, ]}
{Go(s)[1 + A(s)I[B(KzH(s) + I)R(s) + D(s)] + N(s)} ~ (10.20a)
A Hy(9)[1+ A)IR(s) + Hya(s)[1+ A)]D(s) + Hyu(s)N(s) (10.20b)
Finally, substituting (10.19b) into (10.18),

E(s) =
(By 10.20b):

NH.,(s) + M]Y (s) + NH.,(s)R(s)

NH:y(s) + M]H,.(s)[1 + A(s)]R(s) + NH:(s)R(s)

[NH.,(s) + M]H,q(s)[1 + A(s)]D(s)

[NH:(s) + M]H,,(s)N(s)

(By 10.5): = [NH.,(s) + M]H,,(s)A(s)R
H‘d(s) 1
Hy(s)

NH,(s) + M] [
() + M]H,(s)N (s) (10.21)
$)R(s) + Hea(s)[1 + A(s)]D(s)

Hen(s)N(s) (10.13)

I
++ =

(s)

+ [NH (s +A(s)]D(s)
+ [NH.,

éH(s)A(
+

It is useful to notice that a moment before the failure occurrence,

U(s) = KoZo(s) + K, Y (s) + R(s)

=[Ko:0...01Z(s) + K, Y(5) + R(s) (10.22)
Let us partition G,(s) and G,(s) of (10.17) such that
Gu($) & [Guo(9)' = .2 Gu(s)']
and
Gy(s) & [Gyo(s) s ... : Gu(s)'] (10.23a)
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then

(sli —F)"'TiB,  i=0,1,...,k (10.23b)

Gui(s)
G (sli —F)'Li, i=01,....k (10.23¢)

i)

Based on (10.22) and (10.23), in (10.19), the term

1o — GuO(S)Ko 0 N 0 - GuO(S)

[1 _ Gl,(S)KZrlGu(S) _ -G, (S)Ko 14 G, (S)
: 0 . 0 :

_Guk (S)KO Irk Guk (S‘)

Now each block of H.,(s) of (10.19b)

H.,(s) é [H.y0(s) + Hopi () oot Hopi(s)] (10.24a)

can be separately expressed as

H.i(s)

(Lo — Guo(5)Ko] ' [Guo(5)K, + Go(s)], ifi=0 (10.24b)
= { Gui($)KolLo — Guo()Ko) ™' [Guo(8) K + Gio(9)]

+Gi(8)K, + Gyi(s) ifi#0 (10.24c¢)

Equation (10.24) implies that each of the k rows of the term NH.,(s) + M of
H.:(s), Hey(s), and H,,(s) of (10.21) and (10.13) can be separately and
explicitly expressed. Thus each of the k residual signals has its own explicit
transfer function from R(s), D(s), and N(s).

A distinct and important feature of the normal feedback compensator
of this book is TyB = 0. Thus from (10.23b) G,(s) = 0, and the expression
of H.,(s) of (10.24) can be further greatly simplified as

H:yi(s)
| Gyols) = (sho — Fy) ' Lo ifi=0 (10.25a)
| Guil(9)KoGoo(s) + Gui(s)Ky + Gi(s)  ifi #0 (10.25b)

Conversely, this simplification adds another significant advantage to the
new design approach of this book.
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After the transfer function relationships between E(s) and its source
signals R(s), D(s), and N(s) are established, we can now have the explicit
effect of model uncertainty A(s) and measurement noise N(s) on E(s), and
can devise the corresponding treatment of A(s) and N(s).

Theorem 10.2 shows that the effect of model uncertainty and of
measurement noise, and the effect of failure can be separated in different
terms. Thus in a failure-free situation [D(s) = 0 or is very minor] the effect
of model uncertainty and measurement noise can be explicitly expressed as

E(s) = E.(s) + E,(s) (10.26)

We therefore set the threshold of nonzero e(t) as the largest possible value of
(10.26):

T & max | E(s) + E(s) | < max|[E, (jo)]| + max|| o)
< max{g{H,,(jo)]]| R(joo) | A&
+ max ([ Hon(jeo)]}7 (10.27)

where @ stands for the largest singular value.

Although the J;, is a threshold on E(jw) in the frequency domain, it is
directly related to e(7) by the Parseval theorem. For example, according to
Emami—Naeini and Rock [1988], J,; of (10.27) can be applied to the rms
value of e(¢) with “window” length t:

fo+1 1/2

lle]l, = C_) / e(1)e(t) di (10.28)

ty

If |le||, < Ju, then the nonzero e() is considered to be caused by the model
uncertainty A(s) [with input R(s)] and noise N(s) only, but not by failure
D(s). Only when |le||, > J; can we consider that the nonzero e(z) is caused
by failure D(s). It is reasonable from (10.27) that the more severe the model
uncertainty A and measurement noise 7, the higher the threshold J,,. The
actual value of t should be adjusted in practice [Emami—Naeini and Rock,
1988].

Another important technical adjustment is to test each residual signal
ei(t) (i=1,...,k). This will greatly improve the test resolution because
both J,,; and ||¢;|| should be much lower than J,, and ||e||, respectively.
Fortunately;-based-on:(10:24);thestestzoperation (10.27) and (10.28) can be
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directly adjusted to

Juni = max{ || Heri (joo) || R(jeo) [ }A + max{ || Heni (o) | 17,
i=1,...k (10.29)

and

fo+t 1/2
1
llel, = (;)/e?(l) | ,  i=1,...,k (10.30)

fo

To summarize, this treatment of model uncertainty and measurement
noise is very general and simple. This treatment is again uniquely enabled by
the failure detection and isolation scheme of this book, which needs to check
only the zero/nonzero pattern of the residual signals.

After the threshold J;, for the residual signal e(7) is established, it is
useful to establish the theoretical lower bound of the failure signal strength
for guaranteed detection. For simplicity of presentation, this bound will be
established on Jy, instead of the k individual J;,;’s. Obviously, this lower
bound must cause ||E(s)|| to exceed the threshold Jy, or

min |E(s) = E4(s) + Eq(s) + E,(s)]|

> T & max || Ex(s) + En(s)]] (10.31)

Theorem 10.3

For sufficiently strong failure such that Emami—Naeini and Rock [1988]
min || E4(s)|| > max || E,.(s) + E,(s)]| (10.32)

the detectable failure D(s) must satisfy

| Hoa(s)D(s)]|| > ( fi’%) (10.33)
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Proof

From (10.32),

min ||E(s) = Eq(s) + E(s) + Eu(s)||
> min || E4(s)|| — max || E.(s) + Eu(s)]|

Hence the inequality that

min || Eq(s)|| — max | E,(s) + E,(s)|| > Ju( & max |[E(s) + En(s)]])

or

min || Eq(s)|| > 2max [|E,(s) + En(s)[| & 2]y (10.34)

can guarantee the detectable requirement (10.31).
From (10.21)

[Ea(s)|| = [[Hea(s)D(s) + A(s)Hea(s)D(s)]|
Hence from A(s) < 1,
[Ea(s)]|= (1 = A)|[Hea(s)D(s)]| (10.35)

The inequalities (10.35) and (10.34) together prove (10.33).

Guaranteeing failure detection while also guaranteeing that all effects
of plant system model uncertainty and measurement noise are not
misinterpreted as the effects of failure, is almost impossible in practice.
Reflected in Theorem 10.3, the requirement (10.33) is almost impossible to
satisfy generally. For example, H,4(s) is most often a row vector. Thus the
theoretical minimal value of the left-hand side of (10.33) is 0 and hence
cannot satisfy (10.33).

Nonetheless, Theorem 10.3 is still a simple and general theoretical
result. Its requirement (10.33) indicates that the larger the model uncertainty
A and the measurement noise 7, and the higher the threshold J,,, the more
difficult for D(s) to satisfy (10.33) (or to be guaranteed detectable). This
interpretation is certainly reasonable.
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Example 10.6

A complete normal feedback control and failure accommodation control
design (with treatment of model uncertainty and measurement noise)
follows from Example 10.2.

Let us first design a normal feedback compensator (4.10) for the plant
system of Example 10.2, with order ro =n —m = 1:

(Fo, Ty, Lo, Ko, K,) =(—21.732,[0 5.656 —0.0003 1],
[376.3 —250.2 41.9],10,000,
(709 —56,552.3 —13,393])

where Fy is arbitrarily assigned with sufficiently negative real part (see the
proof of Theorem 3.2), Ty and L, are designed to satisfy (4.1) and (4.3)
(ThyB =0), and [Kp : K,] is designed such that the corresponding control

u(t) = Kozo(1) + Kyy(1)
= [Ko : K,][T; : C'I'x(¢) (at steady state)
=[709 7.7 -3 -=3393]x(¢)

can assign eigenvalues —2.778 £+ j14.19 and —5.222 4+ j4.533 to the
feedback system dynamic matrix 4 + B[K, : K,][T}: C''. This set of
eigenvalues guarantee the fastest settling time for step response of the
corresponding system [D’Azzo and Houpis, 1988].

Because TyB = 0, we use (10.25a) to compute

H.y0(s) = (slo — Fo) ' Lo
[3763 —2502 41.9] (10.36)
(s +21.732)

Because the two terms of (10.29) are mathematically quite compatible,
we let the first term be zero [or let the model uncertainty A(s) be 0] to
simplify the presentation. Then (10.29) only has its second term left

Jii = mue)ix{HHem(jw)H}ﬁ, i=1,...,4 (10.37)

which will be computed in the following, based on the result of Example
10.2.

Copyright 2004 by Marcel DekKer, Inc. All Rights Reserved.



Because TyB = 0, we use (10.25b) to compute

) [0 0.8529/(s + 10) —29.091/(s+10)}

zy1\S) =

& 0 0.3924/(s +21.732) 3.715/(s + 21.732)

H.pp(s) = [0.1002 —0.0842 —9.9451]/(s + 10)
62/(s + 10)

H.y3(s) = [ 476/(s + 10) — 24,185/(s + 10) ]

66/(s+21.732) 213/(s + 21.732) — 11,740/ (s + 21.732)

H.4(s) = [—59.96 56,535 13,393]/(s + 10)

Substituting H.-,(s) into the first part of H,,(s) of (10.13), we have

0 3.754 0.445°+0.0217s—171.88 ]
(s+10)(s+21.732) (s+10)(s+21.732)
0.07085 —0.00115—0.07054 0.70715+0.039
(s+10) (s+10) (s+10)
NH,,(s)+ M =
—29.145—4.782 0.43145%428.365+2441 —0.706s—111,801.9
(s+10)(s+21.732) (s+10)(s+21.732) (s+10)(s+21.732)
5—49.95 56,535 13,393
L (s+10) (s+10) (s+10) i

The second part of H,,(s) of (10.13), which equals H,,(s) of (10.20), is
computed in the following. From (10.36),

Kszy(S) + Ky = K()szo(s) + Ky
7095 + 3,764,541 —56,552s — 3,731,006 —13,393s5 4 127,941
B s+ 21.732

A1bi(s) bas) bs(s)]
Let

ai(s)

ax(s)

as(s)

§% 4 65.9455% + 52745 — 25,411
= | 66.53s% + 3.6485s — 25,971
67.4

/d(S)

All Rights Reserved.




where

d(s) = det(sl — A)
= (52 + 66.07s + 4145)(s — 0.9076) (s + 21.732)

Now

Hyu(s) = {I = C(sT — A) " BIK.H. (5) + K, ]} "

a(s) -
=1 =] als) |[bi(s) bals) b3(s)]
as(s)

1 — ax(8)ba(s) — az(s)bs(s) ar (s)ba(s) ay(s)bs(s)
ax(s)by(s) 1 —ai(s)bi(s) — a3 (s)bs(s) ax(s)b3(s)
as(s)by(s) az(s)ba(s) 1 —ay(s)bi(s) — az(s)ba(s)

1 — a1 (s)bi(s) — az(s)ba(s) — az(s)bs(s)

Finally, the J,; of (10.37) are computed for the four failure detectors,
i=1,...,4 (Table 10.8).

We have completely designed a normal (failure-free) feedback
compensator and a failure detection, isolation, and accommodation system
for the plant system of Example 10.2. The second system can treat plant
system output measurement noise with given upper bound 7. The treatment
of plant system model uncertainty is very similar to that of the plant output
measurement noise.

This example also shows that the design results of this book—the
normal (failure-free) feedback compensator of Chaps 5 through 9—and the
failure detection, isolation, and accommodation system of this chapter can
be coordinatively designed and implemented.

Table 10.8 Threshold Treatment of Measurement Noise of the Four
Robust Failure Detectors of Example 10.2 and Fig. 10.1

For eq(t) ex(t) es(t) eq(t)
o~ 2.7 11.6 2.6 0
i~ 7.87 x 1037 4.66 x 1037 50.3 x 1067 43.7 x 1087
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EXERCISES

10.1 Consider an observable system with » = 5 and m = 4.

(a) Construct Tables 10.1 and 10.2 for the failure detection and
isolation of this system, and for ¢ = 1 and 2, respectively.

(b) Construct a similar table for ¢ = 3. Compare the results of ¢ = 2
and 3.

Answer: Although the number of robust failure detectors is the same

for ¢ =2 and 3, the failure isolation capability is different for g = 2

and 3 (the latter is better but is more difficult to design).

(c) Construct Table 10.4 for ¢ = 1,2, and 3, respectively.

(b) If one plant system state is known to be failure free, then how
many robust failure detectors are needed to isolate ¢ simulta-
neous failures (¢ = 1,2, 3, respectively)?

10.2 Under the condition that F; is in diagonal form, how can (10.7) be the
sufficient condition of the physical requirement which is expressed
inside the parentheses attached to (10.7)?

10.3 Repeat the design of Examples 10.2 and 10.6 with a new set of robust
failure detector poles: {—1, —2} and a new Fy= —10. Other
parameters remain unchanged.

Partial answer:

s _ [0 0 00058 1
" 1o 0 00029 1

T,=[0 00015 0 —1]

[0 02518 09678 0
3710 04617 08871 0

and

Ty=[-1 0 0 0]

Copyright 2004 by Marcel DekKer, Inc. All Rights Reserved.



Appendix A

Relevant Linear Algebra and Numerical Linear
Algebra

This appendix introduces the relevant mathematical background to this
book. In addition, an attempt is made to use the simplest possible language,
even though such a presentation may sacrifice certain degree of mathema-
tical rigor.

The appendix is divided into three sections.

Section 1 introduces some basic results of linear algebra, especially the
geometrical meanings and numerical importance of orthogonal
linear transformation.

Section 2 describes and analyzes some basic matrix operations which
transforms-a-given-matrix-intosechelon form. A special case of the



echelon form is triangular form. This operation is the one used most
often in this book.

Section 3 introduces a basic result of numerical linear algebra—the
singular value decomposition (SVD). Several applications of SVD
are also introduced.

A.1 LINEAR SPACE AND LINEAR OPERATORS

A.1.1 Linear Dependence, Linear Independence, and Linear

Space
Definition A.1
A set of n vectors {xy,...,x,} is linearly dependent if there exists an n-
dimensional nonzero vector ¢ A [cy,...,¢,]' # 0 such that
[Xp:.. . Xple = X100 + -+ X6, =0 (A1)

Otherwise, this set of vectors is linearly independent. At least one vector of a
set of linear dependent vectors is a linear combination of other vectors in
that set. For example, if a set of vectors satisfies (A.1), then

x,«:—M, if ¢; 20 (A.2)

Ci
Example A.1

Let a set of two vectors be

sl = |} 7]

Because there exist a vector ¢ = [2 1]' # 0 such that [x;:xp]e = 0,x; and x;
are linearly dependent of each other.

Example A.2

Let another set of two vectors be

[X3:X4] = [g ”



Because only a zero vector ¢ = 0 can make [X3: X4]¢ = 0, therefore x; and x4
are linearly independent of each other.

Similarly, any combination of two vectors, with one from the set
{x3,X4} and another from the set {x;,x,} of Example A.l, is linearly
independent. However, any set of three vectors out of x; (i=1,...,4) is
linearly dependent.

Examples A.1 and A.2 can be interpreted geometrically from Fig. A.1,
which can be interpreted to have the following three points.

l.

Because x; and x; vectors are parallel in Fig. A.1, or because the
angle between them is 180° (or 0°), x; and X, are linearly
dependent, or x; differs from x, only by a scalar factor. Because
the angles between all other vector pairs in Fig. A.1 are not equal
to 0° or 180°, all other pairs of vectors are linearly independent.
From analytical geometry, the angle 6 between two vectors x; and
X; satisfies the relation

xpx; = xx; = x| cos . (A3)

where the vector norm ||x|| is defined in Definition 2.3. For
example,

—1][-2 2] =-4

[T —1][lI[=2 2][lcos 180° = (V2)(2v2)(~1)
1 —1][1 0] =1
=[I[1 —1]JlI[1 0]|[cos 45° = (V2)(1)(1/v2)

1
I
[

XX3

and

xXixg=[1 —1][1 1]'=0

=[x [[[Ixall cos 90° = [|x1 [ [x4[|(0)

We define two vectors as “orthogonal” if the angle between
them is +90°. For example, {x;,x4} and {x, x4} are orthogonal
pairs, while other vector pairs of Fig. A.1 are not. If cos 0° and cos
180° have the largest magnitude (1) among cosine functions,
cos(+90°) = 0 has the smallest. Hence orthogonal vectors are
considered “most linearly independent.”

Wesalso-define fixilf:cos as the “projection” of x; on x;, if 0



4\
51
X2
| X
4 ~.
\\\ x3 ~
-7 -1 0 | ',rz "
Al X,
-2k

Figure A.1 Four two-dimensional vectors.

is the angle between x; and x;. Obviously, a projection of x; is
always less than or equal to [|x;|| and is equal to 0 if 6 = £90°.
3. Any two-dimensional vector is a linear combination of any two
linearly independent vectors on the same plane. For example, x3 =
X; + x4 and x4 = (1/2)x, + x3. These two relations are shown in
Fig. A.1 by the dotted lines. Therefore, the vectors in any set of
three two-dimensional vectors are linearly dependent of each
other. For example, if x = [y: z]e, then [x:y:z][1: —¢/]' = 0.
If two vectors (y,z) are orthogonal to each other, and if
[y: z]e equals a third vector x, then the two coefficients of ¢ equal
the projections of x on y and z respectively, after dividing these
two projections by their respective ||y|| and ||z||. For example, for
x3 of Fig. A.1, the linear combination coefficients (1 and 1) of the
orthogonal vectors x| and x4 equal the projections (v/2 and v/2) of
x3 on x; and x4, divided by the norms (\/5, \/5) of x; and x4.

Definition A.2

A linear space S can be formed by a set of vectors such that any vector
within this set (defined as €S) can be represented as a linear combination of
some other vectors X = [X;:...:X,] within this set (defined as the span of X).
The largest number of linearly independent vectors needed to represent the
vectors in this space is defined as the dimension dim(S) of that space.

For example, vectors x; and x; of Example A.1 can span only a
straight-linesspaceswhichsissparallelsto x; and x;. Any of these parallel



vectors is a linear combination of another parallel vector only. Hence the
dimension of this straight line space is 1.

In Examples A.1 and A.2, each of the vector pair {x;,x3}, {x1,X4},
and {x3, X4} can span a plane space, because any vector on this plane can be
represented as a linear combination of one of these three vector pairs. In
fact, because any one vector in this plane is a linear combination of two
linearly independent vectors on this plane, the dimension of this plane space
is 2.

Example A.3

The above result can be extended to higher dimensional vectors. Let a set of
three-dimensional vectors be

21100 -1 -2
[Vii¥2:¥3i¥ai¥si¥eiys) = [0 1 1 1 0 1
00112 1 0

which are plotted in Fig. A.2.

From Fig. A.2, vectors y, and y, span a horizontal two-dimensional
plane space. Any three-dimensional vector with form [x x 0] (“x” stands for
an arbitrary entry) or with 0 at the third (vertical) direction equals a linear
combination of y, and y,, and therefore lies within this horizontal plane
space. For example, y; =[-2 1 0] =[y;:y,][~3/2 1]' belongs to this
space. However, all other vectors y; to ys which stretch on the vertical

¥ o
rz - e|

Figure A.2 Seven three-dimensional vectors.



direction are linearly independent of the vectors {y,,y,,y;} of this
horizontal plane space, and hence do not belong to this horizontal plane
space.

Although y; to y4 are linearly independent of the vectors {y,,y,,¥;}
on the horizontal plane space, only ys (=[0 0 x]) is orthogonal to all
vectors of this horizontal space (also called orthogonal to that space).
Finally, any one of the vectors y; to ys together with two linearly
independent vectors of this horizontal plane space, form a three-dimensional
cubic space.

Similarly, vectors y, and y4 span a two-dimensional plane space which
is parallel to this page flat. Any three-dimensional vector with form [x 0 x]’
or with 0 at the second (depth) direction equals a linear combination of y,
and ye. For example, ys =[00 2] = [y, : y4][1 2]’ belongs to this space.
However, all other vectors of Fig. A.2 have nonzero projection on the depth
direction. Therefore these vectors are linearly independent of the vectors
{¥1,¥s,¥s} and do not belong to this space. Among these vectors, none is
orthogonal to this two-dimensional space because none has the form
[0 x 0], even though within each pair of {y4,¥,},{¥>,¥s}> and {y;, ¥}, the
two vectors are orthogonal to each other.

In the literature, there is a more rigorous definition than Definition
A.2 for the linear space S [Gan, 1959]. For example, if we generalize the
vectors of a linear space S as “elements” of that space, then S must also
have “0” and ““1” elements [Gan, 1959].

Example A.4

We define the space formed by all n-dimensional vectors b satisfying the
equation b = Ax (matrix 4 is given and X is arbitrary) as R(A4), or as the
“range space of 4.” We also define the number of linearly independent
columns/rows of A4 as the “column rank/row rank” of A4. It is clear that the
necessary and sufficient condition for dim[R(A4)] = n [or for R(A4) to include
any possible nonzero b] is that the column rank of 4 equals 7.

If the column/row rank of a matrix equals the number of columns/
rows of that matrix, then we call this matrix “‘full-column rank’/“full-row
rank.”

We also define the space formed by all vectors x satisfying Ax = 0 as
N(A) or the “null space of A4.” Tt is clear that if matrix A4 is full-column rank,
then the only vector in N(A4) is x = 0.

However, the set of all vectors x satisfying Ax =b (b#0 is given)
cannot form a linear space, because this set lacks a “0”” element (or 0 vector)
such that 40 = b+#0.



A.1.2 Basis, Linear Transformation, and Orthogonal Linear
Transformation

Definition A.3

If any vector x of a linear space S is a linear combination of a set of linearly
independent vectors of S, then this set of linear independent vectors is
defined as a ““basis’ of S. The linear combination coefficient is defined as the
“representation” of x with respect to this set of basis vectors.

Because any set of n linearly independent n-dimensional vectors can
span an n-dimensional linear space S, by Definition A.3 any of these sets can
be considered as a basis of S.

Definition A.4

An n-dimensional linear space can have many different sets of basis vectors.
The operation which transforms the representation of a vector from one
basis to another basis is called a “linear transformation.”

For example, the simplest and most commonly used basis is a set of
orthogonal unit coordinate vectors

1 0 0
0 1
I A e : e A |
0
0 0 1
Because any n-dimensional vector b = [by, ..., b,] is a linear combination of
the vectors [e; : ... : e,] such that
b=1b (A4)

and because the representation of b on 7 is b itself, /7 is a basis and is called an
“identity matrix.”

For another example, if we let the vectors of 4 = [a; : ... : a,] be the
basis for a vector b, then Ax = b implies that x = 4~ 'b is the representation
of b on 4.



Now let another set of vectors V' = [v; : ... :v,] be the basis for the
same b. Then

VX =b = Ax (A.5a)
implies
X=V"'b=Vr"ux (A.5b)

is the representation of b on V.

Definition A.b

A set of orthogonal basis vectors {uj,...,u,, (wu;, = xd;)} is called an
“orthogonal basis.” The linear transformation which transforms to an
orthogonal basis is called “orthogonal linear transformation.”

Furthermore, if all vectors of this orthogonal basis are ““‘normalized”
(JJu;|| = 1,Vi), then the basis is called “orthonormal” and the corresponding
orthogonal linear transformation becomes an ‘“‘orthonormal linear trans-
formation.” A matrix U, which is formed by a set of orthonormal basis
vectors, satisfies U'U = I and is called a “unitary matrix.”

Example A.5

Let a vector x = [l v/3]'. Table A.l shows some two-dimensional linear
transformation examples in which the orthonormal linear transformation
can preserve the norms of any vector x and its representation X on the new
orthonormal basis. This property can be interpreted geometrically from the
fourth column of Table A.1, which shows that every element of X equals the
projection of x on the corresponding axis [see interpretation (3) of Fig. A.1].
This property can be proved mathematically that

X = &%) = (Y rHx'? = (xx)? (A.6)

if ¥ (or V1) is a unitary matrix. This property implies that the orthonormal
matrixsoperationsissnumericallysstables[ Wilkinson, 1965].



TaBLE A.1 Some Examples of Two-Dimensional Linear Transformation

Representation Transformation
Basis vectors of x, X [ X and its new basis form
[ B i -x! .
E- 10 1 2 s 1 Identity
[0 1 V3 ;
3 | X=X,
0= [0 2 (/a2 1 al’ Orthogonal
|20 1/2 2/
= il
- _ i,
u=|9 1 AVE 2 Orthonormal
1 0 | —1 z (Givens 90°)
|
G - 1/2  —+/3/2 2 2 Orthonormal
T v82 1/2 0 (Givens 60°)
G- |VE2 -1 [\v/3 2 Orthonormal
2T /2 32 1 {Givens 307
H= [ -2 2 Orthonermal
—-1/2 —~/3/2 | O {Householder)
—/3f2 1/2
poll —V3R 4 27 Ordinary
~lo 1/2 | 2v/3




A.2 COMPUTATION OF MATRIX DECOMPOSITION

In solving a set of linear equations
Ax =b (A.7a)

or in computing the representation x of b on the column vectors of 4, a
nonsingular matrix ’~! can be multiplied on the left side of 4 and b to make
matrix A = V"4 in echelon form. Then based on the equation

Ax =V"'p

>

b (A.7b)

x can be computed. In other words, the representation b of b can be
computed on the new basis vectors of V' such that A4 of (A.7b) is in a
decomposed form, and then x can be computed based on (A.7b).

We will study three different matrices of ¥~!. All three matrices can be
computed from the following unified algorithm.

Algorithm A.1 QR Decomposition [Dongarra et al., 1979]
Let A=[a; : ... : a,]beannxn dimensional square matrix.

Step 1: Compute n x n dimensional matrix V! such that

Vitaj =[x, 0...0] (A.8a)

Step 2: Let

Step 3: Compute (n — 1) x (n — 1) dimensional matrix ¥, " such that

Vz_lalz = [x, 00}/ (A.8b)



Step 4: Let

1: 0
0: 0 0
L (Vi 4A) AV 4
: V, =
0:
[x a), i
0 X a),
0
: : a3 : . L aAgy
10 : 0 i

Continuing in this fashion, at most n — 1 times we will have

Vo vstvita s vta)

x -aj - /
0 x -a)-

= (A.9)
0 L.X

During this basic procedure, if a;;y; =0 is encountered
(i=1,2,...),orif

rx X : 7]

volvstrita =

0 : : I P D R : P

then the matrix V7| will be computed based on the next
nonzero vector positioned on thelrlght side of a;;y; (for
example if iy ;éO) such that V,  a;;0 = [x, 0...0]". The




The above situation can happen more than once. However, as long as
this situation happens at least once, the corresponding result of (A.9) will
become a so-called upper-echelon form, such as

X R]
’ X
0 X
0 0 : 0 X Ry
X
0 0 X
_ oot rrre A
vla=1|o 0 :0 0 0 0...0 x R; =
X
0...0 : 0 X
o -
0 o 0
0 o 0
~ ~
L P q i
(A.10)

[TINRLL)

where “x’”’s are nonzero elements.

In the upper-echelon form, the nonzero elements appear only at the
upper right-hand side of the upper triangular blocks [such as R;, R», and R;
in (A.10)]. These upper triangular blocks appear one after another after
shifting one or more columns to the right. For example, in (A.10), R,
follows R; after shifting one column to the right, and R; follows R, after
shifting ¢ columns to the right.

If two upper triangular blocks appear one next to the other without
column shifting, then the two blocks can be combined as one upper
triangular block. If there is no column shifting at all, then the entire matrix
is an upper triangular matrix as in (A.9). Hence the upper triangular form is
a special case of the upper-echelon form.

The main feature of an upper-echelon-form matrix is that it reveals
clearly the linear dependency among its columns. More explicitly, all
columns corresponding to the upper triangular blocks are linearly
independent of each other, while all other columns are linear combinations
of their respective linearly independent columns at their left.

For example in matrix R of (A.10), the (p + 1)-th column is linearly
dependentronythescolumnsycorresponding to R;, while the ¢ columns



between R, and Rj are linearly dependent on the columns corresponding to
Rl and R2.

The above property of an upper-echelon-form matrix enables the
solving of Eq. (A.7a). We first let matrix

A=[4:1b] (A.11)

Then apply Algorithm A.1 to matrix 4. If after V! is applied,

A

-1 15 | Au A by b
Vol A_[ o - (A.12a)

then b; is already a linear combination of the columns of A;;, and the
coefficients of this linear combination form the solution x of (A.7a). In other
words, if A4;;x; =b;, then the solution of (A.7a) is x = [x] 0] with
n—r 0’s in vector 0.

In general, we cannot expect the form of (A.12a) for all 4 and b.
Instead, we should expect

Voo vih =[x x] (A.12b)

For (A.12b) to be represented as a linear combination of the columns of
AN V...V A, A must be in upper triangular form or must have all n
columns linearly independent of each other. This is the proof that to have
Ax =b solvable for all b, matrix 4 must have full-column rank (see
Example A.4).

In the basic procedure of Algorithm A.l, only matrix Vi(Vi’lai =
[x, 0...0]) can be nonunique. We will introduce three kinds of such
matrices in the following. The last two matrices among the three are unitary.
We call Algorithm A.1 “QR decomposition” when matrix V' is unitary.

For simplicity of presentation, let us express

aiéa:[al,...,an]’



A. Gaussian Elimination with Partial Pivoting

T 0 07
—arfa; 1
—aj-1/a;
E = E2E; =
—ai/a;
—aj1/a;
0
__an/aj 1-
00 0 0 1 0 ... 07
01 0 000
00 0 1
0 0 0 0 0 ... 0<j-throw (A.13)
00 0 00 1
0 0
L0 0 1]
1

the j-th column

where |a;| = max; {|a;|} is called the “pivotal element.”

Because Eja A a=[aj,a,...,a;-1,a1,d41,-..,a,), it can be easily
verified that E,Fja = E,a = [a;,0. .. 0]'.

Because of (A.13), all unknown parameters of E,

| —ai/a;| <1, Viandj (A.14)

Therefore the Gaussian elimination with partial pivoting is fairly
numerically stable [Wilkinson, 1965].

The order of the computation (multiplications only) of Ex (x # a) is
n, excluding the computation of matrix E itself. Hence the order of
computation for Algorithm A.1 using Gaussian elimination method is




B. Householder Method [Householder, 1958]

H=1-2aa (A.15a)
where
.
and
_ [a+|alle, if a=0
b= {a— lale,, if a1 <0 (A-15¢)
Because
bl = (') = (2][a|* +-2a |a]|)"/ (A.16)
Ha = (I —2bb'/||b]*)a
(A.15) : = a—2b([la]l* £ai [la])/[b]
(A.16) : =a —2b/2
(A.15): =a— (a+]al|[1,0...0])
= F[[all,0...0/ (A.17)

In addition, because

H'H = (I — 2aa’)(I — 2aa))
= [ —4aa’ + 4aa'aa’
(A.15b) : = I — 4a’ + 4a(b'b/||b|>)a
=] —4aa’ + 4aa’
=1

matrix A is unitary. Hence this computation is numerically stable (see
Example A.5).

The actual computation of Hx (x # a) does not need to compute the
matrix H itself but can follow the following steps:

Step 1:  Compute2||b|| > = (a’a+a,(a’a)"/?)~! (computation order: n)
er ompute scalar ¢ b||~(b'x) (computation order: n)




Step 3: Compute Hx = x — ¢b (computation order: n)

Because the result of Step 1 remains the same for different vectors x, the
computation of Step 1 will not be counted. Hence the computation of
Algorithm A.1 using Householder method is ;-5 o , 2i*~ 21 /3.

Because computational reliability is more important than computa-
tional efficiency, the Householder method is very commonly used in practice
and is most commonly used in this book, even though it requires twice as
much computation as the Gaussian elimination method.

C. Givens’ Rotational Method [Givens, 1958]

G = Gle,...,G,FQGn,l (A.18a)
where
1 -
: }i -1
1:
1
n—i—1
L 1]
and
cosf; sinb;
Ri= { —sinf; cos 0,} (A.18¢)

Equation (A.18) shows that the component matrices G; (or R;) of matrix G
are decided by their respective parameter 0;, (i=n—1,n—2,...,1). The
parameter 6; is determined by the two-dimensional vector operated by R;.
Let this vector be b; = [x y]'. Then

0; = tan"' (y/x) (= 90° if x = 0)
or

cos 0; = x/||b| and sin0; = y/|[bi|



It is easy to verify that
Rb; = [||b]|, 0...0]

The geometrical meaning of R;b; can be interpreted as the rotation of
the original cartesian coordinates counterclockwise 6; degrees so that the x-
axis now coincides with b;. This operation is depicted in the Fig. A.3.

The reader can refer to Example A.5 for three numerical examples of
Givens’ method.

It is easy to verify that according to (A.18a,b,c),

Ga=|al, 0...0] (A.18d)

Because R}R; = I Vi, the matrix G of (A.18a,b,c) is a unitary matrix.
Therefore like the Householder method, the Givens’ rotational method is
numerically stable.

It is easy to verify that the order of computation for Gx (x # a) is 4n,
excluding the computation of G itself. Hence the order of computation of
Algorithm A.1is T3 , 4i* ~ 413 /3.

Although Givens’ method is only half as efficient as Householder’s
method, it has very simple and explicit geometrical meanings. Therefore it is
still commonly used in practice and is used in Algorithm 8.3 of this book.

Finally, after Algorithm A.1 is applied and the echelon-form matrix
V=14 = A is obtained, we still need to compute x from 4 and V~'b=h.
Eliminating the linearly dependent columns of A4 [see description of the
echelon form of (A.10)], we have

air an ... iy X1 b

_ 0 ayy ... dyy X2 _ b2

Ax & ) =b2 (A.19)
0 0 a. X, b,

Figure A:3..Geometrical:-meaning-of.Givens’ rotational method.



where the diagonal elements of the matrix are nonzero. It is obvious that the
solution of (A.19) is

b, A (b,- pp a,-jx,-)

Ay dajj

i=r—1,r—2,...,1 (A.20)

3

The computation of (A.20) is called “back substitution,” whose order of
computation at r = n is n*>/2. This computation is numerically stable with
respect to the problem (A.19) itself [Wilkinson, 1965].

However, because this operation requires consecutive divisions by
a; (i=r,r—1,...,1), the problem (A.19) can be ill conditioned when these
elements have small magnitudes. This understandin% conforms with the
theoretical result about the condition number || A||||4 || of matrix 4 (2.13).
In the next section (A.28)—(A.29), we will show that HZ_I | =o' =|4]",
where ¢, and

|| = m,.in{|aii|}

are the smallest singular value and the smallest eigenvalue of A, respectively.
Thus small elements a;; imply large and bad condition of matrix 4 as well as
problem (A.19).

Comparing the resulting vector [a;,0...0]' of the three matrix
decomposition methods, both orthogonal methods (Householder and
Givens) have a; = ||a;||, [see (A.17) and (A.18d)], while the Gaussian
elimination method has a; = ||a;||, [see (A.13) and Definition 2.1]. Because
lla:||l, > ||a:| ., the orthogonal methods not only are computationally more
reliable than the Gaussian elimination method, but also make their
subsequent computation better conditioned.

A.3 SINGULAR VALUE DECOMPOSITION (SVD)

Matrix singular value decomposition was proposed as early as in 1870 by
Betram and Jordan. It became one of the most important mathematical
tools in numerical linear algebra and linear control systems theory only in
the 1970s [Klema and Laub, 1980], about a hundred years later. This is
because SVD is a well-conditioned problem and because of the development
of a systematic and numerically stable computational algorithm of SVD
[Golub and Reinsch, 1970].



A.3.1 Definition and Existence
Theorem A.1

For any mxn dimensional matrix A4, there exists an mxm and nxn
dimensional unitary matrix U and V such that

A=U0Y v =uny (A21)
where

)R N R }
= s r — alagy01,02,...,0,
0 0 £101,02

UZ[U] : Uz] and V:[Vl : V2]

r m-—r n—r
and
01202220, >0

Here g; (i = 1,...,r) is the positive square root of the i-th largest eigenvalue
of matrix 4* 4, and is defined as the i-th nonzero singular value of matrix A.
Matrices U and V are the orthonormal right eigenvector matrices of 44*
and A*A, respectively. In addition, there are min{m,n} —r A n—r (if
n<m) zero singular values (¢,,; =--- =0, =0) of matrix 4. Equation
(A.21) is defined as the singular value decomposition of matrix 4.

Proof

See Stewart [1976].

A.3.2 Properties
Theorem A.2 Minimax Theorem

Let the singular values of an mxn dimensional matrix A4 be
01=20,=--- =20, > 0. Then

A
o) = min  max u k=1,2,...,n (A.22)
dim(S)=n—k+1 xeS




where the linear space S is spanned by the n—k+ 1 basis vectors
{Vi;Vict1,-..,Vy} which are the last n—k+ 1 vectors of matrix ¥ of
(A.21).

Proof

From Definition A.2, let the unitary matrix

Vé[Vlle]é[Vl oae. Vk—llvk oae. Vn]

Then the \E:/ctors of V; will span the “orthogonal complement space™ SofS
such that SS = 0 and SUS = n-dimensional space.
Because x e S implies

0
o RV
0
X=[vi : .. ¢ ViV ..t V] ; éVa (A.23)
k
n—k+1
L n
Hence
lAx]l/]x]| = (x* 4% 4x/x*x)"/?
= (@*V*4*ava/a*V*va)'/?
= (a*Zza/a*a)l/2
=[(afo} + @} 0ty + + @20 /(@ + aty + -+ a)]
<o

(A.24)




Thus the maximum part of the theorem is proved. On the other hand,

ap

X=[Vi : .. 5 Vit Vil i 1 V]

similarly implies that ||Ax||/|x|| > ox.
The combined (A.24) and (A.25) prove Theorem A.2.

Corollary A.1
A
4] 2 max X1
A0 x|
Corollary A.2
X
x#0 ||x|| "
Corollary A.3

I R VA o

where A; (i = 1,...,n) are the eigenvalues of matrix 4 (if m = n)

Corollary A.4

If A" exists, then

_ _ *
LA as o

—1 2
”A ” = m i : ||X|| n

(A.25)

(A.26)

(A.27)

(A.28)

(A.29)



Corollary A.5
If A~" exists, then

A—l
i A _ (A.30)
x#0 ||x]|

Corollary A.6

Let the singular values of two n x n matrices 4 and B be o, =0,>= -+ =0,
and sy =s,> - -+ =5, respectively, then

lox — skl <[4 — Bl 2 |a4],  (k=1,...,n) (A31)

Proof

From (A.22),

= mi A4x|| [(B+ AA)X]|
k= min max = ma
dim(S)=n—k+1 Ix|]]  xeSx=0 [Ix]]
XeSx#0
[1BX|lxesxzo | I1AAX]xcsxz0
[l 1]l
< + || AA|| (A.32)

Similarly,

s <o + || AAl (A.33)

Hence the theorem.

Corollary A.6 implies that SVD problem is well conditioned, or is
insensitive to the original data variation AA.

A.3.3 Applications

For simplicity of presentation, we let all matrices of this section be real, and



A. Solving of a Set of Linear Equations

Ax =b, (b#0) (A.34)
From (A.21):

x = VX 'Ub (A.35)
Theorem A.3

If b is a linear combination of the columns of Uj, then (A.35) is an exact
solution of (A.34).

This theorem proves that the columns of U; span the range space of
A R(A) (see Example A 4).

Theorem A.4

If b is not a linear combination of the columns of U, then (A.35) is the least-
square solution of (A.34). In other words, for all Ax##0,

[[Ax — b|| <||A(x + Ax) —b]| (A.36)

if x is computed from (A.35).

Theorem A.5
If the rank of matrix A is n, then U, has n linearly independent columns.

Thus the necessary and sufficient condition for (A.34) to have exact solution
(A.35) for all b is that matrix 4 be full rank.

Theorem A.6
The nonzero solution x of linear equations
Ax =0 (A.37)
is a linear combination of the columns of V. In other words, the columns of
V, span the null space of 4,N(A4).
he-abovesresultzcansbesgeneralized to its dual case.

BRTY.{| I



Example A.6

[See Step 2(a), Algorithm 6.1.]

Let the m x p (m<p) dimensional matrix DB be full-row rank. Then in
its SVD of (A.21), Uy = U and U, =0. Thus based on the duality (or
transpose) of Theorem A.6, there is no nonzero solution ¢ such that
c¢DB = 0.

Based on the duality (or transpose) of Corollary A.2,

min ||cDB|| = 0,,, when ¢ =u/, = (the m-th column of U)’

Example A.7

(See Conclusion 6.4 and its proof.)

Let the nx p (n > p) dimensional matrix B be full-column rank. Then
in its SVD of (A.21), U; and U, have dimensions nxp and nx (n— p),
respectively. Based on the transpose of Theorem A.6, all rows of (n — m) xn
dimensional matrix 7 such that 7B = 0 are linear combinations of the rows
of Uj.

Now because R(U;)UR(U;) = n-dimensional space R" and
U U, = 0, the rows of any m x n matrix C such that [T": ']’ is full rank
must be linear combinations of the rows of Uj. Consequently, CB must be
full-column rank.

Example A.8
(See Steps 4 of Algorithm 8.2 and Step 3 of Algorithm 8.3.)

Let the columns of an nxp (n>p) dimensional matrix D be
orthonormal. Then in its SVD of (A.21), U =D and X, =V = I,. Thus
the least-square solution (A.35) of Dc =b is

c=Db

Theorem A.7

Let us define A" as the pseudo-inverse of matrix A such that
AT AAY = A AATA = A, (AAT) = AA", and (4" 4)' = A* A. Then

At =13 U



Thus from Theorems A.3 and A.4, x = A™b is the least-square solution of
Ax =b.

B. Rank Determination

From Theorems A.3 to A.6, the rank r of an n x n dimensional matrix A4
determines whether the Eqs. (A.34) and (A.37) are solvable. If r = n, then
(A.34) is solvable for all bs#0 while (A.37) is unsolvable. If r < n, then
(A.34) may not be solvable while (A.37) has n — r linearly independent
solutions x.

There are several numerical methods for rank determination. For
example, Algorithm A.l can be used to determine the number (=r) of
linearly independent columns/rows of a matrix. The rank of a square matrix
also equals the number of nonzero eigenvalues of that matrix. However,
both numbers are very sensitive to the variation and uncertainty of matrix
A,AA. Therefore these two methods are not very reliable in rank
determination.

On the other hand, the rank of matrix 4 also equals the number of
nonzero singular values of 4, and the singular values are insensitive to AA4.
Therefore, this is, so far, the most reliable method of rank determination.

Theorem A.8

If the singular values computed from a given matrix 4+ A4 are
s1=s= -+ =5, >0 (r=n), then the necessary condition for the rank of
the original matrix A to be less than n (or g, of 4 = 0) is ||AA|| =s,, and the
necessary condition for the rank of A4 to be less than r (or g, of 4 =0) is
lAA4||=s, (r=1,...,n).

Proof
Let o, be zero in Corollary A.6 for r = 1,..., n, respectively.

Theorem A.8 implies that the determination of rank = r (or r nonzero
singular values) has an accuracy margin which is equivalent of ||A4| < g,.
In solving the set of linear equations (A.34), the higher the determined
r, the more accurate the least-square solution (A.35), and the greater the
norm of the corresponding solution because of the greater corresponding
g7l (seenthesend-of -SeesAs2)e Fhisstradeoff of accuracy and solution



magnitude is studied in depth in Lawson and Hanson [1974] and Golub et
al. [1976a].

From this perspective, not only the absolute magnitude of the singular
values, but also the relative magnitude among the singular values should be
considered in rank determination. For example, the r is determined so that
there is a greater gap between singular values s, and s, than other singular
value gaps.

This tradeoff between accuracy and solution magnitude (or the
condition of subsequent computation) also surfaced in control systems
problems. For example, such a tradeoff is involved between the condition of
Eq. (4.1) and the amount of system order (or system information), as
discussed at the end of Sec. 5.2. Such a tradeoff also appears at the Hankow
matrix-based model reduction problem [Kung and Lin, 1981] and minimal
order realization problem [Tsui, 1983b].

Finally, although singular values are most reliable in revealing the
total number of linearly independent columns/rows of a matrix, they cannot
reveal which columns/rows of that matrix are linearly independent of each
other. On the other hand, each system matrix column or row corresponds to
a certain state, a certain input, or a certain output. Hence linear dependency
of each system matrix column/row is essential in many control problems
such as controllability/observability index computation or analytical
eigenvector assignment. Because the orthogonal QR matrix decomposition
operation (Algorithm A.1) can reveal such linear dependency, and because
this method is still quite reliable in computation [DeJong, 1975; Golub et al.,
1976a; Tsui, 1983b], it is most widely used in this book.



Appendix B

Design Projects and Problems

There are eight design projects listed with partial answers, in this appendix.
Its purpose is twofold. First, these design projects show the usefulness of the
theoretical design methods of this book. Second, these design projects are
the synthesized and practical exercises of the theoretical design methods of
this book.

Because of the limitations on the scope of this book and of control
theory itself, only the mathematical models and mathematical design
requirements, and not the physical meanings of each project, are described
in this appendix. Readers are referred to the original papers for the detailed
physical meanings of each project, because such understanding of the actual
physical project is essential to any good design.



System 1

and

(a)

(b)

©

(d)
(©

69
(8)

Airplane system [Choi and Sirisena, 1974]

[—0.037 0.0123 0.00055 -1
0 0 1 0
—6.37 0 —-0.23  0.0618

1.25 0 0.016 —0.0457
[ 0.00084 0.000236
0 0
0.08 0.804
L —0.0862 —0.0665

oS O O
S O =
(= =
- O O

Using Algorithms 5.3 to 6.1, design the dynamic part of the
dynamic output feedback compensator of this system, with
F=-2

Using Algorithm 9.1, design the LQ optimal state feedback
control K for Q =1,R=1. Compute the eigenvalues of the
corresponding feedback system dynamic matrix 4 — BK.

Using the result K of part (b), design the output part of the
dynamic output K A [Kz : K,] of the feedback compensator of
part (a) such that K = K[T" : C']' A KC is best satisfied.

Using Algorithm 8.1 (dual version), design K, such that the
matrix 4 — BK, C has the same eigenvalues of part (b).

Using Algorithm 9.2, design the LQ static output feedback
control K, Cx(#) for Q = I, R = 1. The answer is:

K. — —0.397 —1.591 —7.847
YTl 1.255 3.476 4.98

Repeat part (¢) for the generalized state feedback control KCx(7).

Compare the control systems of part (c) to part (f) in terms of

poles, eigenvector matrix condition number, feedback gain, and

Zero-input response.



ipet Pi Pi Pipe 4
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Figure B.1 A four-tank system.

(h) Design a complete failure detection/isolation/accommodation
system, with poles equal —1 and —2, and with any result selected
from part (c) to part (f) as a normal (failure-free) compensator.

System 2 Four-Water-Tank System [Ge and Fang, 1988]

Figure B.1 shows a four-tank system. On the condition that
A; = 500 cm?,5; = 2.54469 cm? (i =1,...,4), and u(f) =1 cm?/sec, the
state space model with the water levels 4; (cm) (i =1,...,4) as the four-
system states is

-1 1 0 0 0.002
O 1 -2 1 0 0
A =21.886 B=
0 1 -2 1 0
0 0 1 -2 0
and
1 0 00
cC=1]0 0 1 0
0 0 0 1

(a) Using Algorithms 5.3 to 6.1 (especially Step 2(b) of Algorithm
6.1), design the dynamic part of a dynamic output feedback
compensator of this system, with F = —7.



(b) Using Algorithm 10.1, design the failure detection and isolation
system with ¢ =2 and with robust failure detector pole (or
double pole) equal —7. The partial answer is:

T,=[0 0 0 —130.613]

o _ [0 16702 —110655 0
ST 10 —27.144 135721 0

Ts=[84.582 0 —84.582 0]

[116.517 —18.713 0 0]
6 =

—114.759 22952 0 O

(c) Using the duality of Algorithm 5.3, design a unique state
feedback gain K to place the eigenvalues —2.778 + j14.19 and
—5.222 + j4.533 in matrix 4 — BK.

(d) Compare the parameter T; of part (a) and T; (i =1,3,5,6) of
part (b) in generating the normal-state feedback K of part (c): Let
K = K;C;, where C; A [T!:C']' (i=0,1,3,5,6), and compare
the accuracy of K;C; and the magnitude of gain K.

(e) Repeat Examples 10.5 and 10.6 for the design of failure
accommodation control and of threshold treatment of model
uncertainty and measurement noise.

System 3 A Corvette 5.7 L, Multi-port, Fuel-Injected Engine

[Min, 1990]

At the operating point that manifold pressure = 14.4 In-Hg, throttle position
at 17.9% of maximum, engine speed = 1730 RPM, and load torque = 56.3 ft-
Ib., the linearized state space model is

0.779 0.0632 —-0.149 —-0.635 —0.211

1 0 0 0 0
A= 10271 -0.253 0.999 0 0.845

0 0 0 0 0

0 0 0 0 0



1.579 0.22598

0 0 1 0000

B= 0 —-09054| and C=|0 0 1 0 O
1 0 00 0 1 0
0 1

The five system states are: change in manifold pressure, change in manifold
pressure (last rotation), change in engine RPM, change in throttle position,
and change in external load, respectively. The two inputs are the next
rotation throttle angle change and the change of external load during the
next rotation, respectively.

(a) Using Algorithms 5.3 to 6.1, design the dynamic part of an output
feedback compensator for this system, with poles —1+ ;.

(b) Determine the rank of matrix [7” : C']'. It should be 5 = n.

(c) Design the failure detection, isolation, and accommodation
system, with ¢ = 2, and poles = —2, —4, and —6.

System 4 Booster Rockets Ascending Through Earth’s
Atmosphere [Enns, 1990]

[—0.0878 1 0 0 0 0 42x10°10
. 1.09 0 0 0 B[o 0 1.27x1078
0 0 0 1 0 0 0
.l 0 0 —37.6 —0.123 1 0 —1.2x10°
[0 1 0 —0.00606 0 1 0
cC=1]0 0 —-376 —0.123 D=0 0 —12x10°°
[0 0 0 —0.00606 0 0 0

The four system states are angle of attack (rad.), pitch rate ¢ (rad/sec),
lowest frequency elastic model deflection #, and #, respectively. The three
inputs are the error of elastic model poles vpoLg, error of elastic model zeros
vzero, and the thrust vectoring control upyc(lb.), respectively. The three
outputs are the gyro output measurement ygyro(rad/sec), # — vpoLg, and
YGYRO — ¢ — VzERO, Tespectively.

From a control theory point of view, a difficulty involved with this
problem is that the third column of B is too small, while its corresponding
input is the only real control input utyc (the other two inputs are artificially
addedstoraccount-forstheserrorsyassociated with the elasticity model). In



addition, adjustment has to be made to consider the nonzero D matrix,
which is assumed to be zero in this book. Nonetheless, without matrix D
and by eliminating the second column of matrix B, the example becomes
similar to that of System 1.

System 5 Bank-to-Turn Missile [Wise, 1990]

At the flight conditions of 16° of angle of attack, Mach 0.8 (velocity of
886.78 ft/sec), and attitude of 4000 ft, the linearized missile rigid body
airframe state space model is

[—1.3046 0 —0.2142 0 0
47.7109 0 —104.8346 0 0
A= B =
0 0 0 1 0
0 0 —12,769 —135.6 12,769

and
[—1156.893 0 189.948 0
0 1 0 0

C =

The four system states are angle of attack, pitch rate, fin deflection, and fin
rate, respectively. The control input is fin deflection command (rad.), and
the two outputs are normal acceleration (ft/s*) and pitch rate (rad/s),
respectively.

(a) Using Algorithms 5.3 to 6.1, design the dynamic part of the
dynamic output feedback compensator of this system. Because
CB = 0, we let the compensator order r = 1 and dynamic matrix
F=-10.

(b) Using the duality of Algorithm 5.3, design state feedback gain
K which can place each of the following four sets of
eigenvalues in matrix 4 — BK [Wilson et al, 1992]
{-5.12, —14.54, —24.03 +;18.48}, {—10 +,10, —24 + 18},
{-9.676 +;8.175, —2391 +17.65}, and {—4.7+;2.416,
23.96 + j17.65}.

(c) Design the respective output part K of the dynamic output
feedback compensator of part (a), for the four sets of eigenvalues
of part (b).

(d) Compare the controls of parts (b) and (c), for each of the four sets
of part (b). The comparison can be made in the practical aspects
suchrassthe-control-gains(Kwvs. K) and the zero-input response.



(e) Design a complete failure detection, isolation, and accommoda-
tion system, with ¢ = 1 and poles = —14, —10 + j10. The normal
feedback compensator can be chosen from any of the four
compensators of parts (a) and (c).

System 6 Extended Medium-Range Air-to-Air Missile
[Wilson et al., 1992]

At the flight condition of 10° of angle of attack, Mach 2.5 (velocity of
2420 ft/s), and dynamic pressure of 17201b/ft*, the normal roll-yaw missile

airframe model is

—0.501
16.83
—3227
0

A=

and

0.109
—132.8
—1620

0

B =

—0.985 0.174
—0.575 0.0123
0.321 -2.1
0 1

S O OO

0.007

27.19

—1240
0

The four system states are sideslip, yaw rate, roll rate, and roll angle,
respectively. The two control inputs are rudder position and aileron

position, respectively.

(a) For each of the four sets of feedback system eigenvalues of
System 35, use Algorithms 8.2 and 8.3 and the analytic decoupling
rules to design the eigenvectors and the corresponding state
feedback gains.

(b)

Compare each of the four sets of results of part (a) with the

following corresponding result of Wilson et al. [1992]:

1.83
—2.35

—0.154
0.287

0.00492
—0.03555

—0.0778
0.0203



5.6 —0.275 —0.00481 —0.989
| —471 035 —0.00815 1.1312

319 —0.232  0.10718  0.1777
k= | —1.63 0299 —0.15998 —0.4656}
1277 —0.172  0.10453  0.1223
10.925 0.2147 —0.15696 —0.2743]

The comparison can be made in practical aspects such as feedback
gain, robust stability (2.23 — 2.25), and zero-input response.

System 7 Chemical Reactor [Munro, 1979]

1.38 —-0.2077 6.715 —-5.676
—-0.5814 —4.29 0 0.675

A=\ 1067 4273 —6.654 5893
0.048 4273 1343 —2.104
and
0 0
s 5679 0
= 11136 —3.146
1136 0

(a) Repeat part (a) of System 6, but for a new eigenvalue set:
{-0.2,-0.5,—5.0566, —8.6659}.

(b) Repeat part (b) of System 6, but compare the following two
possible results [Kautsky et al., 1985]:

0.23416 —0.11423 0.31574 —0.26872
[1.1673 ~0.28830 0.68632 —0.24241]

0.10277 —0.63333 —0.11872 0.14632
:[0.83615 0.52704  —0.25775 0.54269]




System 8 Distillation Column [Kle, 1977]

—0.1094 0.0628 0 0 0
1.306  —2.132  0.9807 0 0
A= 0 1.595  -3.149 1.547 0

0 0.0355 2.632 —4.257 1.855
0 0.00227 0 0.1636  —0.1625

and
0 0
0.0638 0
B=0.0838 —0.1396
0.1004 —0.206

0.0063 —0.0128

(a) Repeat part (a) of System 6, but for a new set of eigenvalues
{-0.2,-0.5,—1,—1+ j}.

(b) Repeat part (b) of System 6, but compare the following result of
Kautsky et al. [1985]:

C [-159.68 69.844 —165.24 12523 —45.748
1 -99.348  7.9892 —14.158 —5.9382 —1.2542
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