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Series Introduction

Many textbooks have been written on control engineering, describing new
techniques for controlling systems, or new and better ways of mathematic-
ally formulating existing methods to solve the ever-increasing complex
problems faced by practicing engineers. However, few of these books fully
address the applications aspects of control engineering. It is the intention of
this new series to redress this situation.

The series will stress applications issues, and not just the mathematics
of control engineering. It will provide texts that present not only both new
and well-established techniques, but also detailed examples of the
application of these methods to the solution of real-world problems. The
authors will be drawn from both the academic world and the relevant
applications sectors.
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There are already many exciting examples of the application of control
techniques in the established fields of electrical, mechanical (including
aerospace), and chemical engineering. We have only to look around in
today’s highly automated society to see the use of advanced robotics
techniques in the manufacturing industries; the use of automated control
and navigation systems in air and surface transport systems; the increasing
use of intelligent control systems in the many artifacts available to the
domestic consumer market; and the reliable supply of water, gas, and
electrical power to the domestic consumer and to industry. However, there
are currently many challenging problems that could benefit from wider
exposure to the applicability of control methodologies, and the systematic
systems-oriented basis inherent in the application of control techniques.

This series presents books that draw on expertise from both the
academic world and the applications domains, and will be useful not only as
academically recommended course texts but also as handbooks for
practitioners in many applications domains. Robust Control Systems is
another outstanding entry in Dekker’s Control Engineering series.
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Preface

This second edition of Robust Control System Design introduces a new
design approach to modern control systems. This design approach
guarantees, for the first time, the full realization of robustness properties
of generalized state feedback control for most open-loop system conditions.
State and generalized state feedback control can achieve feedback system
performance and robustness far more effectively than other basic forms of
control. Performance and robustness (versus model uncertainty and control
disturbance) are mutually contradictory, yet they are the key properties
required by practical control systems. Hence, this design approach not only
enriches the existing modern control system design theory, but also makes
possible its wide application.
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Modern (or state space) control theory was developed in the 1960s.
The theory has evolved such that the state feedback control and its
implementing observer are designed separately (following the so-called
separation principle [Wil, 1995]). With this existing design approach,
although the direct state feedback system can be designed to have good
performance and robustness, almost all the actual corresponding observer
feedback systems have entirely different robustness. In the new design
approach presented here, the state feedback control and its implementing
observer are designed together. More explicitly, the state feedback control is
designed based on the results of its implementing observer. The resulting
state feedback control is the generalized state feedback control [Tsui, 1999b].

This fundamentally new approach guarantees—for all open-loop
systems with more outputs than inputs or with at least one stable
transmission zero—the same loop transfer function and therefore the
same robustness of the observer feedback system and the corresponding
direct state feedback system. Most open-loop systems satisfy either of these
two conditions. For all other open-loop systems, this approach guarantees
that the difference between the loop transfer functions of the above two
feedback systems be kept minimal in a simple least-square sense.

Modern and classical control theories are the two major components
of control systems theory. Compared with classical control theory, modern
control theory can describe a single system’s performance and robustness
more accurately, but it lacks a clear concept of feedback system robustness,
such as the loop transfer function of classical control theory. By fully using
the concept of loop transfer functions, the approach exploits the advantages
of both classical and modern control theories. This approach guarantees the
robustness and loop transfer function of classical control theory, while
designing this loop transfer function much more effectively (though
indirectly) using modern control design techniques. Thus it achieves both
good robustness and performance for feedback control systems.

If the first edition of this book emphasized the first of the above two
advantages (i.e., the true realization of robustness properties of feedback
control), then this second edition highlights the second of the above two
advantages—the far more effective design of high performance and
robustness feedback control itself.

A useful control theory should provide general and effective guidance
on complicated control system design. To achieve this, the design
formulation must fully address both performance and robustness. It must
also exploit fully the existing design freedom and apply a general, simple,
and explicit design procedure. The approach presented here truly satisfies
these requirements. Since this book concentrates on this new design
approach and its relevant analysis, other analytical control theory results are
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presented with an emphasis on their physical meanings, instead of their
detailed mathematical derivations and proofs.

The following list shows several of the book’s most important results.
With the exception of the third item, these results are not presented in any
other books:

1. The first general dynamic output feedback compensator that can
implement state or generalized state feedback control, and its
design procedure. The feedback system of this compensator is the
first general feedback system that has the same robustness
properties of its corresponding direct state feedback system
(Chapters 3 to 6).

2. A systematic, simple, and explicit eigenvalue assignment proce-
dure using static output feedback control or generalized state
feedback control (Section 8.1). This procedure enables the
systematic eigenvector assignment procedures of this book, and
is general to most open-loop system conditions if based on the
generalized state feedback control of this book.

3. Eigenvector assignment procedures that can fully use the
freedom of this assignment. Both numerical algorithms and
analytical procedures are presented (Section 8.2).

4. A general failure detection, isolation, and accommodation
compensator that is capable of considering system model
uncertainty and measurement noise, and its systematic design
procedure (Chapter 10).

5. The simplest possible formulation, and a truly systematic and
general procedure, of minimal order observer design (Chapter 7).

6. Solution of the matrix equation TA � FT = LC [matrix pair
(A, C) is observable and eigenvalues of matrix F are arbitrarily
assigned]. This solution is general and has all eigenvalues of F
and all rows of T completely decoupled (F is in Jordan form).
This solution uniquely enables the full use of the remaining
freedom of this matrix equation, which is fundamentally
important in most of the basic design problems of modern
control theory (Chapters 5 to 8, 10).

7. The basic design concept of generating a state feedback control
signal without estimating all state variables, and the general-
ization of this design concept from function observers only to all
feedback compensators (Chapters 3 to 10).

8. The complete unification of two existing basic feedback
structures of modern control theory—the zero input gain state
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observer feedback structure and the static output feedback
structure (Section 6.3).

9. A more generally accurate robust stability measure that is
expressed in terms of the sensitivities of each system pole. This
analytical measure can be used to guide systematic feedback
system design (Sections 2.2.2 and 8.2).

10. Comparison of computational complexity and therefore track-
ability (ability to adjust the original design formulation based on
the final and numerical design results) of all feedback control
design techniques (Section 9.3).

11. Emphasis on the distinct advantages of high performance/
robustness control design using eigenstructure assignment
techniques over the techniques for the direct design of loop
transfer functions (Chapters 2, 3, 8, 9).

12. The concept of adaptive control and its application in failure
accommodation and control (Section 10.2).

The first five of the above results are actual design results. The last seven are
new theoretical results and concepts that have enabled the establishment of
the first five results. In other words, the main new result (result 1, the full
realization of robustness properties of state/generalized state feedback
control) is enabled by some significant and fundamental developments (such
as results 6 to 8), and is validated by the distinct effectiveness of state/
generalized state feedback control (results 2 to 3 and 9 to 11).

This book also addresses the computational reliability of its analysis
and design algorithms. This is because practical control problems usually
require a large amount of computation, and unreliable computation can
yield totally unreliable results. Every effort has been made to use reliable
computational methods in design algorithms, such as the computation of
Hessenberg form (instead of the canonical form) and of orthogonal matrix
operation (instead of elementary matrix operation).

As a result, the computation required in this book is slightly more
complicated, but the more reliable results thus obtained make the effort
worthwhile. It should be noted that the computation of polynomials
required by the classical control theory is usually unreliable. The
development of computational software has also eased considerably the
complexity of computation. Each design procedure is presented in algorithm
form, and each step of these algorithms can be implemented directly by the
existing computational software.

This book will be useful to control system designers and researchers.
Although a solid background in basic linear algebra is required, it requires
remarkably less mathematical sophistication than other books similar in
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scope. This book can also be used as a textbook for students who have had a
first course (preferably including state space theory) in control systems.
Multi-input and multi-output systems are discussed throughout. However,
readers will find that the results have been substantially simplified to be
quite easily understandable, and that the results have been well unified with
the single-input and single-output system results. In addition, this book is
comprehensive and self-contained, with every topic introduced at the most
basic level. Thus it could also be used by honor program students with
background in signals and systems only.

An overview of each chapter follows. Chapter 1 introduces basic
system models and properties. Chapter 2 analyzes the performance and
sensitivity of a single overall system. Chapter 3 describes the critical role of
loop transfer functions on the sensitivity of feedback systems, including the
observer feedback systems. Chapter 4 proposes the new design approach
and analyzes its advantages. Chapter 5 presents the solution of a basic
matrix equation. This solution is used throughout the remaining chapters
(except Chapter 9). Chapter 6 presents the design of the dynamic part of the
observer such that for any state feedback control signal generated by this
observer, the loop transfer function of this control is also fully realized.
Chapter 7 presents the design of the function observer, which generates an
arbitrarily given state feedback control signal, with minimized observer
order. Chapter 8 presents the eigenvalue/vector assignment control design
methods. Chapter 9 introduces the linear quadratic optimal control design
methods. Both designs of Chapters 8 and 9 will determine the output part of
the observer of Chapter 6, as well as the ‘‘target’’ closed-loop system loop
transfer function. Comparison of various designs reveals two distinct
advantages of eigenstructure assignment design. Chapter 10 deals with the
design of a general failure detection, isolation, and (adaptive) accommoda-
tion compensator that is capable of considering system model uncertainty
and measurement noise. This compensator has the compatible structure
of—and can be implemented in coordination with—the normal (free of
major failure) robust control compensator of this book. There is a set of
simple exercises at the end of each chapter.

To make the book self-contained, Appendix A provides a simple
introduction to the relevant mathematical background material. Appendix
B lists the mathematical models of eight real-world systems for synthesized
design practice.

I would like to thank everyone who helped me, especially during my
student years. I also thank my former student Reza Shahriar, who assisted
with some of the computer graphics.

Chia-Chi Tsui
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1

System Mathematical Models and
Basic Properties

Unlike other engineering specialities whose subject of study is a specific
engineering system such as an engine system or an airborne system, control
systems theory studies only a general mathematical model of engineering
systems. This chapter introduces two basic mathematical models and some
basic system properties revealed by these models. There are four sections in
this chapter.

Section 1.1 introduces the state space model and transfer function
model of linear time-invariant multi-input and multi-output systems, and
the basic relationship between these two models.

Section 1.2 describes the eigenstructure decomposition of the state
space model, where the dynamic matrix of this model is in Jordan form.
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Section 1.3 introduces two basic system properties—controllability
and observability.

Section 1.4 introduces two basic system parameters—system poles and
zeros. These properties and parameters can be simply and clearly described
based on the eigenstructure decomposition of the state space model.

1.1 TWO KINDS OF MATHEMATICAL MODELS

This book studies only the linear time-invariant systems, which have also
been the main subject of control systems theory. A linear time-invariant
system can be represented by two kinds of mathematical models—the state
space model and the transfer function model. The control theory based on
the state space model is called the ‘‘state space control theory’’ or the
‘‘modern control theory,’’ and the control theory based on the transfer
function model is called the ‘‘classical control theory.’’

We will first introduce the state space model and its derivation.
A state space model is formed by a set of first-order linear differential

equations with constant coefficients (1.1a) and a set of linear equations
(1.1b)

_xxðtÞ ¼ AxðtÞ þ BuðtÞ ð1:1aÞ
yðtÞ ¼ CxðtÞ þDuðtÞ ð1:1bÞ

where

xðtÞ ¼ ½x1ðtÞ; . . . ; xnðtÞ�0 is the system state vector (the prime symbol
stands for transpose)

xiðtÞ; i ¼ 1; . . . ; n are the system state variables
uðtÞ ¼ ½u1ðtÞ; . . . ; upðtÞ�0 is the system input
yðtÞ ¼ ½y1ðtÞ; . . . ; ymðtÞ�0 is the system output

and the system matrices ðA; B; C; DÞ are real, constant, and with
dimensions n6n; n6p;m6n, and m6p, respectively.

In the above model, Eq. (1.1a) is called the ‘‘dynamic equation,’’ which
describes the ‘‘dynamic part’’ of the system and how the initial system state
xð0Þ and system input uðtÞ will determine the system state xðtÞ. Hence matrix
A is called the ‘‘dynamic matrix’’ of the system. Equation (1.1b) describes
how the system state xðtÞ and system input uðtÞ will instantly determine
system output yðtÞ. This is the ‘‘output part’’ of the system and is static
(memoryless) as compared with the dynamic part of the system.
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From the definition of (1.1), parameters p and m represent the number
of system inputs and outputs, respectively. If p > 1, then we call the
corresponding system ‘‘multi-input.’’ If m > 1, then we call the correspond-
ing system ‘‘multi-output.’’ A multi-input or multi-output system is also
called a ‘‘MIMO system.’’ On the other hand, a system is called ‘‘SISO’’ if it
is both single-input and single-output.

In (1.1), the physical meaning of system state xðtÞ is used to describe
completely the energy distribution of the system at time t, especially at t ¼ 0
(initial time of system operation).

For example, in electrical circuit systems with linear time-invariant
circuit elements (inductors, resistors, and capacitors), the system state is
formed by all independent capacitor voltages and inductor currents. Thus its
initial condition xð0Þ can completely describe the initial electrical charge and
initial magnetic flux stored in the circuit system.

Another example is in linear motion mechanical systems with linear
time-invariant elements (springs, dampers, and masses), in which the system
state is formed by all independent mass velocities and spring forces. Thus its
initial state xð0Þ completely describes the initial dynamic energy and initial
potential energy stored in the mechanical system.

Because of this reason, the number ðnÞ of system states also indicates
the number of the system’s independent energy storage devices.

Example 1.1

The following electrical circuit system is a linear time-invariant system
(Fig. 1.1).

Letting v1ðtÞ and v2ðtÞ be the node voltages of the circuit, and letting
the capacitor voltage and inductor current be the two system states x1ðtÞ and
x2ðtÞ, respectively, we have

v1ðtÞ ¼ x1ðtÞ and v2ðtÞ ¼ x1ðtÞ � R2x2ðtÞ ð1:2Þ

Figure 1.1 A linear time-invariant circuit system.
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In other words, all node voltages and branch currents can be expressed in
terms of system states and inputs. Thus the system’s output part (1.1b) can
be directly derived. For example, if the output yðtÞ is designated as
½v1ðtÞ; v2ðtÞ�0, then from (1.2),

yðtÞ ¼ v1ðtÞ
v2ðtÞ

� �
¼ 1 0

1 �R2

� �
x1ðtÞ
x2ðtÞ

� �
þ 0 4

¼
CxðtÞ þ 0uðtÞ

The dynamic equation of this circuit system can also be derived by
standard circuit analysis. Applying Kirchoff ’s current law at each node of
the circuit, we have

iðtÞ ¼ C _vv1ðtÞ þ
v1ðtÞ
R1

þ ½v1ðtÞ � v2ðtÞ�
R2

ð1:3aÞ

0 ¼ ½v2ðtÞ � v1ðtÞ�
R2

þ ½
R
v2ðtÞ dt�
L

ð1:3bÞ

Substituting (1.2) into (1.3) and after simple manipulation [including taking
derivatives on both sides of (1.3b)], we can have the form of (1.1a)

_xx1ðtÞ ¼
�1

ðCR1Þ
x1ðtÞ þ

�1

C

� �
x2ðtÞ þ

1

C

� �
iðtÞ

_xx2ðtÞ ¼
1

L
x1ðtÞ þ ð�R2

L
Þx2ðtÞ

Thus comparing (1.1a), the system matrices are

A ¼ �1=ðCR1Þ �1=C
1=L �R2=L

� �
B ¼ 1=C

0

� �

Example 1.2

The following linear motion mechanical system is a linear time-invariant
system (Fig. 1.2).

Letting v1ðtÞ and v2ðtÞ be the node velocities in the system, and letting
the mass velocity and spring force be the system states x1ðtÞ and x2ðtÞ,
respectively, then

v1ðtÞ ¼ x1ðtÞ and v2ðtÞ ¼ x1ðtÞ �D�1
2 x2ðtÞ ð1:4Þ
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In other words, all velocities and forces within this mechanical system
can be expressed in terms of the system states and the applied input force.
The system’s output part (1.1b) can thus be directly derived. For example, if
the system output yðtÞ is designated as ½v1ðtÞ; v2ðtÞ�0, then from (1.4),

yðtÞ ¼ v2ðtÞ
v2ðtÞ

� �
¼ 1 0

1 �D�1
2

� �
x1ðtÞ
x2ðtÞ

� �
4
¼

CxðtÞ þ 0uðtÞ

The dynamic equation of this mechanical system can also be derived
using standard dynamic analysis. Balancing the forces at each node of this
system, we have

f ðtÞ ¼ M _vv1ðtÞ þD1v1ðtÞ þD2½v1ðtÞ � v2ðtÞ� ð1:5aÞ
0 ¼ D2½v2ðtÞ � v1ðtÞ� þ K ½

R
v2ðtÞdt� ð1:5bÞ

Substituting (1.4) into (1.5) and after simple manipulation [including
taking derivatives on both sides of (1.5b)], we can have the form of (1.1a)

_xx1ðtÞ ¼
�D1

M

� �
x1ðtÞ þ

�1

M

� �
x2ðtÞ þ

1

M
f ðtÞ

_xx2ðtÞ ¼ Kx1ðtÞ þ
�K

D2

� �
x2ðtÞ

Comparing (1.1a), the system matrices of this system are

A ¼ �D1=M �1=M
K �K=D2

� �
; B ¼ 1=M

0

� �

Figure 1.2 A linear time-invariant mechanical system.
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In the above two examples, the forms and derivations of state space
models are very similar to each other. We call different physical systems that
are similar in terms of mathematical models ‘‘analogs.’’ This property
enables the simulation of the behavior of one physical system (such as a
mechanical system) by comparison with an analog but different physical
system (such as a circuit system), or by the numerical solution of the
mathematical model of that system. We call the former ‘‘analog simulation’’
and the latter ‘‘digital simulation.’’

The use of analogs can be extended to a wide range of linear time-
invariant physical systems, such as rotational mechanical systems, thermo-
dynamic systems, and fluid dynamic systems. Therefore, although the
mathematical models and the control theory which is based on these models
are abstract, they can have very general applications.

A linear time-invariant system can have another kind of mathematical
model, called the transfer function model, which can be derived from its
corresponding state space model.

Taking the Laplace transforms on both sides of (1.1),

XðsÞ ¼ ðsI � AÞ�1
xð0Þ þ ðsI � AÞ�1BUðsÞ ð1:6aÞ

YðsÞ ¼ CXðsÞ þDUðsÞ ð1:6bÞ

where XðsÞ, UðsÞ, and YðsÞ are the Laplace transforms of xðtÞ, uðtÞ, and
yðtÞ, respectively, and I stands for an n-dimensional identity matrix such
that sIXðsÞ ¼ sXðsÞ.

Substituting (1.6a) into (1.6b), we have

YðsÞ ¼ CðsI � AÞ�1
xð0Þ

Zero input response

Yzi ðsÞ

þ ½CðsI � AÞ�1BþD�UðsÞ
Zero state response

YzsðsÞ

ð1:6cÞ

From superposition principle of linear systems, Eqs. (1.6a) and (1.6c)
each have two terms or two contributing factors. The first term is due to the
system’s initial state xð0Þ only and the second is due to system input UðsÞ
only. For example, in (1.6c), the system output (also called the system
‘‘response’’) YðsÞ equals the first term if the system input is zero. We
therefore define the first term of (1.6c) as ‘‘zero input response YziðsÞ.’’
Similarly, YðsÞ equals the second term of (1.6c) if system initial state is zero,
and it is therefore defined as the ‘‘zero state response YzsðsÞ.’’ The form of
(1.6) is guaranteed by the linearity property of the state space model (1.1)
and of the Laplace transform operator.
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The system’s transfer function model GðsÞ is defined from the system’s
zero state response as

YzsðsÞ ¼ GðsÞUðsÞ ð1:7Þ

Therefore from (1.6c),

GðsÞ ¼ CðsI � AÞ�1BþD ð1:8Þ

The definition of GðsÞ shows that it reflects only the relationship
between the system input UðsÞ and output YðsÞ. This relationship (1.7, 1.8)
is derived by combining and simplifying a more detailed system structure
(1.6a,b), which involves explicitly system state XðsÞ and which is derived
directly from the state space model (1.1). In addition, the transfer function
model does not reflect directly and explicitly the system’s zero input
response, which is as important as zero state response.

Example 1.3

Consider the following RC circuit system (a) and mechanical system (b) with
a mass M and a frictional force D (Fig. 1.3):

Balancing the currents of (a) and the forces of (b), we have

iðtÞ ¼ C _vvðtÞ þ ½vðtÞ � 0�
R

and

f ðtÞ ¼ M _vvðtÞ þD½vðtÞ � 0�

Figure 1.3 First-order circuit and mechanical systems.
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Comparing (1.1a), the system matrices ðA4¼ l; BÞ equal ð�1=RC; 1=CÞ and
ð�D=M; 1=MÞ for the above two systems, respectively.

Taking Laplace transforms on these two equations and after
manipulation, we have the form of (1.6a) or (1.6c) as

VðsÞ ¼ 1

s� l
vð0Þ þ B

s� l
UðsÞ

where VðsÞ and UðsÞ are the Laplace transforms of vðtÞ and system input
signal ½iðtÞ or f ðtÞ�, respectively.

Letting UðsÞ ¼ F=s (or step function) and taking the inverse Laplace
transforms on the above equation, we have, for t50,

vðtÞ ¼ l�1fVðsÞg ¼ eltvð0Þ þ F
�B

l

� �
½1� elt�

4
¼
vziðtÞ þ vzsðtÞ

In each of the above expressions of VðsÞ and vðtÞ, the two terms are
zero input response and zero state response, respectively. The two terms of
vðtÞ have the waveforms shown in Fig. 1.4.

The first waveform of Fig. 1.4 shows that the zero input response starts
at its initial condition and then decays exponentially to zero with a time
constant j1=lj. In other words, the response decays to 36.8% of its initial
value at t ¼ j1=lj.

This waveform has very clear physical meaning. In the circuit system
(a), this waveform shows (when the input current is zero) how the capacitor
charge ½¼ CvðtÞ� is discharged to zero through the resistor R with current
vðtÞ=R, and with a time constant RC. In other words, the larger the
capacitor or resistor, the slower the discharge process. In the mechanical
system (b), this waveform shows with zero input force how the momentum
ð¼ MvðtÞÞ slows to zero by the frictional force DvðtÞ, with a time constant
M/D. In other words, the larger the mass and the smaller the friction D, the
longer the time for the velocity to slow to 36.8% of its initial value.

The second waveform of Fig. 1.4 shows that the zero state response
starts at zero and then reaches exponentially to its steady state level, which is
specified by the input level F. This process also has a time constant j1=lj,
which means that the response reaches 1� 36:8% ¼ 63:2% of its final value
at t ¼ j1=lj.

This waveform also has very clear physical meaning. In the circuit
system (a), this waveform shows how the capacitor is charged from zero
until vðtÞ ¼ �ðB=lÞF ¼ RF , by a constant current source FuðtÞ: The final
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Figure 1.4 Waveforms of zero input response and zero state response of a first-order system.
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value of vðtÞ equals the supply side voltage, which means that the capacitor
is fully charged. This charging process has a time constant RC, which means
the larger the capacitor or the resistor, the slower the charging process. In
the mechanical system (b), this waveform shows how the mass is accelerated
from zero to �ðB=lÞF ¼ F=D by a constant force FuðtÞ. This acceleration
process has a time constant M/D, which implies that the larger the mass or
the higher the final velocity F/D, which is implied by a lower D, the longer
the time for the mass to accelerate to 63.2% of its final velocity.

This example shows a very fitting analogy between the two systems,
and the solution of their common mathematical model. This example also
shows the importance of the initial state of the system (initial capacitor
charge and initial mass velocity, respectively) and its effects on the system—
the zero input response (discharging and de-acceleration, respectively).

The definition (1.7)–(1.8) of transfer function model GðsÞ implies that
GðsÞ cannot in general describe explicitly and directly the system’s zero input
response, especially when the system has many state variables, inputs, and
outputs. Because transient response is defined as the complete system
response before reaching steady state and is therefore closely related to the
system’s zero input response, the inherent feature of the transfer function
model will inevitably jeopardize the understanding of the system’s transient
response, whose quickness and smoothness is a major part of system
performance, as will be defined in the next chapter.

In Example 1.3, the concept of time constant is used as a measure of
transient response and is closely related to zero input response.

In both the state space model (1.1) and the transfer function model
(1.8), the system matrix D reflects only an independent and static relation
between system inputs and outputs. This relation can be easily measured
and cancelled in the analysis and design. For this reason, we will assume
D ¼ 0 in the rest of this book. Using this assumption, the transfer function
model of (1.8) now becomes

GðsÞ ¼ CðsI � AÞ�1B ð1:9Þ

Figure 1.5 Partitioned block diagram representation of a system’s transfer
function model.
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Finally, the transfer function model (1.9) can be represented by the
block diagram in Fig. 1.5, which is a series connection of two blocks.

1.2 EIGENSTRUCTURE DECOMPOSITION OF A STATE
SPACE MODEL

To gain a simpler yet deeper understanding of system structure and
properties, we partition the system dynamic matrix

A ¼ VLV�14
¼

j j
V1 : . . . : Vq

j j

264
375

L1

. .
.

Lq

2664
3775

-T1-

..

.

-Tq-

2664
3775

4
¼
T�1LT

ð1:10aÞ

where L ¼ diagfL1; . . . ;Lqg is called a ‘‘Jordan form matrix,’’ whose
diagonal matrix blocks Li (i ¼ 1; . . . ; q, called ‘‘Jordan blocks’’) are formed
by the eigenvalues ðli; i ¼ 1; . . . ; nÞ of matrix A according to the following
rules:

Li ¼ li; if li is real and distinct

Li ¼
si oi

�oi si

� �
;
if the corresponding li and liþ1 are

a complex conjugate pair si+joi

Li ¼ diagfLi; j ; j ¼ 1; . . . ; qig, if the corresponding li repeats ni times,

and the ni; j dimensional matrix

Li; j ¼

li 1

li . .
.

. .
.

1

li

2666664

3777775(blank entries are all 0’s) ð1:10bÞ

and is called “bidiagonal form matrix,” where

ni;1 þ � � � þ ni;qi ¼ ni

Finally, the sum of dimensions of all Jordan blocks Li ði ¼ 1; . . . ; qÞ equals
n.

When matrix A is in (1.10), the corresponding state space model is said
to be in ‘‘Jordan canonical form.’’ Any real square matrix (and any dynamic
matrix) A can have the eigenstructure decomposition such as (1.10).
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Because (1.10) implies AV � VL ¼ 0, we call matrix V the ‘‘right
eigenvector matrix’’ of matrix A, and call each column of matrix
V ; vi ði ¼ 1; . . . ; nÞ, the ‘‘right eigenvector’’ of matrix A corresponding to
li. Similarly, because TA� LT ¼ 0, we call matrix T the ‘‘left eigenvector
matrix’’ of matrix A and call each row of matrix T ; ti ði ¼ 1; . . . ; nÞ, the ‘‘left
eigenvector’’ of matrix A corresponding to li. All but the first eigenvectors
corresponding to the Jordan block (1.10b) are derived based on each other
and are called the ‘‘generalized eigenvectors.’’

From (1.10),

ðsI � AÞ�1 ¼ ½VðsI � LÞV�1��1 ¼ VðsI � LÞ�1V�1

Therefore, from (1.9) and the inverse matrix rules,

GðsÞ ¼ CVðsI � LÞ�1V�1B ð1:11aÞ

¼ CVadjðsI � LÞV�1B

detðsI � LÞ ð1:11bÞ

¼ CVadjðsI � LÞV�1B

ðs� l1Þ . . . ðs� lnÞ
ð1:11cÞ

where adjð�Þ and detð�Þ stand for the adjoint and the determinant of the
corresponding matrix, respectively.

From (1.11c), transfer function GðsÞ is a rational polynomial matrix. It
has an n-th order denominator polynomial whose n roots equal the n
eigenvalues of the system dynamic matrix, and which is called the
‘‘characteristic polynomial’’ of the system.

Comparing (1.11a) with (1.9), a new system matrix triple
ðL; V�1B; CVÞ has the same transfer function as that of system matrix
triple ðA; B; CÞ, provided that A ¼ VLV�1. We call these two state space
models and their corresponding systems ‘‘similar’’ to each other and call the
transformation between the two similar state space models ‘‘similarity
transformation.’’ This property can be extended to any system matrix triple
ðQ�1AQ; Q�1B; CQÞ for a nonsingular Q.

The physical meaning of similar systems can be interpreted as follows.
Let xðtÞ and xðtÞ be the state vectors of state space models ðA; B; CÞ and
ðQ�1AQ; Q�1B; CQÞ, respectively. Then from (1.1),

_xxðtÞ ¼ Q�1AQxðtÞ þQ�1BuðtÞ ð1:12aÞ
yðtÞ ¼ CQxðtÞ þDuðtÞ ð1:12bÞ
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It is clear from (1.1a) and (1.12a) that

xðtÞ ¼ QxðtÞ or xðtÞ ¼ Q�1xðtÞ ð1:13Þ

From Definitions A.3–A.4 of Appendix A, (1.13) implies that the only
difference between the state space models (1.1) and (1.12) is that the state
vectors are based on different basis vector matrices (I and Q, respectively).

Similarity transformation, especially when the state space model is
transformed to ‘‘Jordan canonical form’’ where the dynamic matrix is in
Jordan form, is a very effective and very frequently used scheme which can
substantially simplify the understanding of the system, as will be shown in
the rest of this chapter.

1.3 SYSTEM ORDER, CONTROLLABILITY, AND
OBSERVABILITY

Definition 1.1

The order n of a system equals the order of the system’s characteristic
polynomial. It is clear from (1.11c) that system order also equals the number
of states of the system.

Let us discuss the situation of the existence of common factors
between the transfer function’s numerator and denominator polynomials.
Because this denominator polynomial is defined as the system’s character-
istic polynomial, and because common factors can cancel out each other, the
above situation implies that the corresponding system order is reducible. We
call this kind of system ‘‘reducible.’’ Otherwise the system is said to be
‘‘irreducible.’’

The situation of reducible systems can be more explicitly described by
their corresponding state space models. Definition 1.1 implies that in
reducible systems, some of the system states are not involved with the
system’s input and output relation GðsÞ. In other words, in reducible
systems, some of the system states either cannot be influenced by any of the
system inputs, or cannot influence any of the system outputs. We will define
these two situations separately in the following.

Definition 1.2

If there is at least one system state which cannot be influenced by any of the
system inputs, then the system is uncontrollable; otherwise the system is
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controllable. Among many existing criteria of controllability, perhaps the
simplest is that a system is controllable if and only if there exists no constant
l such that the rank of matrix ½lI � A : B� is less than n.

Definition 1.3

If there is at least one system state which cannot influence any of the system
outputs, then the system is unobservable; otherwise the system is observable.
Among many existing criteria of observability, perhaps the simplest is that a
system is observable if and only if there exists no constant l such that the
rank of matrix ½lI 0 � A0 : C0� is less than n.

Because the rank of matrix lI � A always equals n if l is not an
eigenvalue of A, the above criteria can be checked only for the n values of l
which equal the eigenvalues of matrix A.

It is clear that an irreducible system must be both controllable and
observable. Any uncontrollable or unobservable system is also reducible.

Up to this point, we can see a common and distinct phenomenon
of linear systems—duality. For example, in linear systems, current and
voltage, force and velocity, charge and flux, dynamic energy and
potential energy, capacitance and inductance, mass and spring are dual
pairs. In linear algebra and linear control theory which describe linear
systems, matrix columns and rows, right and left eigenvectors, inputs
and outputs, and controllability and observability are also dual to each
other.

The phenomenon of duality can not only help us understand linear
systems comprehensively, but also help us solve some specific analysis and
design problems. For example, the determination of whether a system
ðA; BÞ is controllable can be replaced by the determination of whether a
system ðA ¼ A0; C ¼ B0Þ is observable instead.

Because matrix ½lI �Q�1AQ : Q�1B� ¼ Q�1½ðlI � AÞQ : B� has the
same rank as that of matrix ½lI � A : B�, similarity transformation will not
change the controllability property of the original system. Similarity
transformation changes only the basis vector matrix of state vectors of
the system’s state space model and therefore cannot change the system’s
basic properties such as controllability. From duality, similarity transfor-
mation cannot change the observability of the system either. It is therefore
valid to determine a system’s controllability and observability conditions
after similarity transformation.

The following three examples show the relative simplicity of
determining controllability and observability when the system matrices are
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in special forms (especially the Jordan canonical form), which can be derived
from any system matrices by similarity transformation.

Example 1.4

Determine whether the system

ðA;B;CÞ ¼
�1 0 0
0 �2 0
0 0 �3

24 35; -b1-
-b2-
-b3-

24 35; ½c1 : c2 : c3�
0@ 1A

is controllable and observable.
From Definition 1.2, it is clear that if any row of matrix B equals zero,

say bi ¼ 0 ði ¼ 1; 2; 3Þ, then there exist a constant l ¼ � i such that the i-th
row of matrix ½lI � A : B� equals zero. Only when every row of matrix B
is nonzero, then the rank of matrix ½lI � A : B� equals n, for l ¼ �i
ði ¼ 1; 2; 3Þ ¼ all eigenvalues of matrix A. Thus the necessary and sufficient
condition for this system to be controllable is that every row of matrix B is
nonzero.

Similarly (from duality), the necessary and sufficient condition for this
system to be observable is that every column of matrix C is nonzero.

From (1.9), the transfer function of this system is

GðsÞ ¼ CðsI � AÞ�1B

¼ c1ðsþ 2Þðsþ 3Þb1 þ c2ðsþ 1Þðsþ 3Þb2 þ c3ðsþ 1Þðsþ 2Þb3
ðsþ 1Þðsþ 2Þðsþ 3Þ

It is clear that if any bi or ci equals zero ði ¼ 1; 2; 3Þ, then there will be
common factors between the numerator and denominator polynomials of
GðsÞ. However, the reducible transfer function GðsÞ cannot indicate the
converse: whether a row of matrix B or a column of matrix C is zero, or
whether the system is uncontrollable or unobservable or both. In this sense,
the information provided by the transfer function model is less complete and
explicit than the state space model.

Controllability and observability conditions can also be clearly
revealed from the system’s block diagram.

Figure 1.6 shows clearly that any system state xiðtÞ is influenced by the
input uðtÞ if and only if the corresponding bi=0 ði ¼ 1; 2; 3Þ, and that any
xiðtÞ influences output yðtÞ if and only if ci=0.
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Example 1.5

Example 1.4 is a Jordan canonical formed system with distinct and real
eigenvalues. The present example studies the same system with multiple
eigenvalues [see (1.10b)]. Let

ðA;B;CÞ ¼
l 1 0
0 l 1
0 0 l

24 35; -0-
-0-
-b3-

24 35; ½c1 : 0 : 0�

0@ 1A
It is clear that the rank of matrix ½lI � A : B� equals n if and only if b3=0,
and the rank of matrix ½lI 0 � A0 : C0� equals n if and only if c1=0.

In examining the block diagram of this system (Fig. 1.7), it is clear that
b3 and c1 are the only links between the system states and the system’s inputs
and outputs, respectively. Because all system states are on a single path in
Fig. 1.7, it is of interest to observe that any system state is observable if and
only if all gains on that path and on the right side of this state are nonzero.
In the dual sense, any state is controllable if and only if all gains on that
path and on the left side of this state are nonzero. This property can help

Figure 1.6 Block diagram of the system from Example 1.4.

Figure 1.7 Block diagram of the system from Example 1.5.
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one to extract the controllable or observable part of the system from the rest
of the system (see Sec. 5.1).

Examples 1.4 and 1.5 show that a system’s controllability and
observability properties can be easily checked based on Jordan canonical
forms of the system’s state space model. Unfortunately, the computational
problem of the similarity transformation to Jordan canonical form is
difficult and is usually very sensitive to the initial data variation.

On the other hand, the form of state space model of Example 1.5 is a
special case of a so-called Hessenberg form, which can be easily and reliably
computed and which can also be used to determine system controllability
and observability (see Sec. 5.1). In the next two examples, we will study a
second special case of the Hessenberg form state space model.

Example 1.6

The observable canonical form state space model:

ðA;B;CÞ ¼

�a1 1 0 . . . 0
�a2 0 1

..

. ..
.

0
�an�1 0 1
�an 0 . . . 0

2666664

3777775;
-b1-
-b2-

..

.

-bn�1-
-bn-

2666664

3777775; ½c1; 0; . . . ; 0�
0BBBBB@

1CCCCCA
ð1:14Þ

This is a single-output (although it can be a multiple input) system. The
above system matrices are said to be in the ‘‘observable canonical form.’’ In
addition, the system matrix A of (1.14) is called a ‘‘companion form’’ or
‘‘canonical form’’ matrix. Let us examine the block diagram of this system.

Figure 1.8 shows that all system states can influence system output
(observable) if and only if c1=0, but if any of the 1’s of matrix A becomes 0,
then all system states left of this 1 on the main path (with all system states)
of Fig. 1.8 will become unobservable. It has been proven that any single-
output (n-th order) observable system is similar to (1.14) [Luenberger, 1967;
Chen, 1984].

From duality, if a system model is ðA0; C0; B0Þ, where the system
matrix triple ðA; B; CÞ is from (1.14), then this system model is said to be in
‘‘controllable canonical form’’ and is controllable if and only if c1=0. Any
single-input controllable system is similar to this ðA0; C0; B0Þ:

Controllable and observable canonical form state space models share
an important property in their corresponding transfer function GðsÞ.
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Substituting (1.14) into (1.9), we have

GðsÞ ¼ CðsI � AÞ�1B

¼ c1ðb1sn�1 þ b2s
n�2 þ � � � þ bn�1sþ bnÞ

sn þ a1sn�1 þ a2sn�2 þ � � � þ an�1sþ an

4
¼

NðsÞ
DðsÞ ð1:15Þ

In other words, the unknown parameters of the canonical state space model
fully match the unknown parameters of the corresponding transfer function.
In addition, the n unknown parameters of the companion form matrix A
fully match the n unknown coefficients of its characteristic polynomial DðsÞ,
which further fully determines all n eigenvalues of the matrix. For this
reason, we also call all (either Jordan, controllable, or observable) canonical
form state space model the ‘‘minimal parameter’’ model.

The computation of similarity transformation from a general state
space model to canonical forms (1.14) and (1.10) implies the compression of
system dynamic matrix parameters from general n6n to only n. In this
sense, the computation of (1.14) and (1.10) can be equally difficult [Laub,
1985].

In this single-output system, the corresponding transfer function has
the denominator DðsÞ as a scalar polynomial, and the numerator NðsÞ as a
polynomial row vector. In the next example, we will extend this result into

Figure 1.8 Block diagram of a single-output system in observable canonical
form.
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multi-output systems whose transfer function has both its denominator DðsÞ
and numerator NðsÞ as a polynomial matrix.

Example 1.7

A multi-output observable system in canonical form:

A ¼

A1 I2 0 . . . 0

A2 0 I3
..
.

..

. ..
.

0

Av�1 0 Iv

Av 0 . . . 0

266666664

377777775 B ¼

B1

B2

:

Bv�1

Bv

26666664

37777775

C ¼ ½ I1 0 . . . 0 �

ð1:16Þ

where the matrix blocks Ii and i ¼ 1; . . . ; v have dimensions mi�1xmi

ðm0 ¼ mÞ and equal an mi�1 dimensional identity matrix with mi�1 �mi

columns eliminated. Here m1 þ � � � þmv ¼ n.
For example, for mi�1 ¼ 3, the corresponding Ii matrix blocks can be:

1 0 0
0 1 0
0 0 1

24 35; 1 0
0 1
0 0

24 35; 1 0
0 0
0 1

24 35; 0 0
1 0
0 1

24 35; 1
0
0

24 35; 0
1
0

24 35; and

0
0
1

24 35
Without loss of generality (by assuming that all system outputs are

linearly independent [Chen, 1984]), we let m1 ¼ m and let I1 be an
m-dimensional identity matrix. These m columns will disappear gradually
at matrices Ii subsequent to I1 ði ¼ 2; . . .Þ. Once the j-th column disappears
at Ii, this column and its corresponding row will disappear at subsequent
matrices Iiþ1; . . . . We can therefore distinguish and assign a constant
parameter vj ¼ i; j ¼ 1; . . . ;m. From Example 1.6, the disappearance of the
j-th column also implies that the j-th output is no longer influenced by any
more system states.

It is apparent that the largest value of vj equals v because all m
columns disappear at matrix Ivþ1 in (1.16). It is also proven that any
observable system is similar to (1.16) [Luenberger, 1967; Chen, 1984], which
is called the ‘‘block-observable canonical form’’ (see Sec. 5.1 also).

Copyright  2004 by Marcel Dekker, Inc. All Rights Reserved.



www.manaraa.com

To match all unknown parameters of (1.16) directly to all unknown
parameters of the corresponding transfer function

GðsÞ ¼ D�1ðsÞNðsÞ ð1:17aÞ

as was done in Example 1.6, where DðsÞ and NðsÞ are m6m and m6p
dimensional polynomial matrices, respectively, we need to perform the
following two preliminary and simple operations.

First, fill m�mi zero rows into each matrix block Ai and
Bi ði ¼ 1; . . . ; vÞ. The rows will be filled at the positions corresponding to
all missing columns of matrix block Ii and its preceding Ij’s
ð j ¼ i � 1; . . . ; 1Þ. For example, if m ¼ 3 and Ii takes the above seven
different forms, then the zero rows shall be filled at the third, the second, the
first, the second and third, the first and third, and the first and second
positions of the second to the seventh matrix, respectively. At the end of this
operation, all matrix blocks Ai and Bi will become m6m and m6p
dimensional matrix blocks Ai and Bi ði ¼ 1; . . . ; vÞ, respectively.

Second, form matrices ½I : �A1 : �A2 : . . . : �Av� and ½B1 : B2 : . . . :
Bv� and then circular shift (shift in zeros) each row (say, the j-th row) of
these two matrices to the right by mðv� vjÞ or pðv� vjÞ positions,
respectively, j ¼ 1; . . . ;m. We denote the two resulting matrices of this
step as ½~II0 : ~AA1 : ~AA2 : . . . : ~AAv� and ½ ~BB1 : ~BB2 : . . . : ~BBv�, respectively.

Finally, in (1.17a),

DðsÞ ¼ ~II0s
v þ ~AA1s

v�1 þ � � � þ ~AAv�1sþ ~AAv ð1:17bÞ

and

NðsÞ ¼ ~BB1s
v�1 þ ~BB2s

v�2 þ � � � þ ~BBv�1sþ ~BBv ð1:17cÞ

It can be verified that the above (1.17) equals the GðsÞ of (1.9), which is
computed from ðA; B; CÞ of (1.16) [Tsui and Chen, 1983a]. (See Exercise 1.3
to 1.6 for the numerical examples of this result.)

The above two steps do not change, add or eliminate any parameter of
ðA; B; CÞ of (1.16). Therefore, these two steps, which have not appeared
explicitly before, enable the direct match between the parameters of state
space model (1.16) and the parameters of the transfer function model
(1.17a). A significant aspect of this direct parametric match is that it enables
the finding of the corresponding state space model (1.16) from a given
transfer function model (1.17). This problem is called ‘‘realization.’’
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Comparing the forms of (1.14) and (1.16), the former is truly a special
case of the latter when m ¼ 1. Therefore, the novel operation of (1.17) is the
direct generalization of realization problem, from the SISO case ðm ¼ 1Þ to
the MIMO case ðm > 1Þ.

Because the realization from (1.17) to (1.16) is easy, a transfer function
model-based design method can easily find its corresponding method in
state space theory. On the other hand, the computation of (1.16) from a
general state space model is very difficult (see the previous example).
Therefore it is difficult to find the corresponding design method in classical
control theory. This is another important reflection of the advantage of state
space control theory over classical control theory.

This book discusses only controllable and observable systems.

1.4 SYSTEM POLES AND ZEROS

Definition 1.4

A system pole is a constant l such that Gðs ¼ lÞ ¼ ?. From (1.11), a system
pole is a root of the characteristic polynomial of the system GðsÞ and is also
an eigenvalue of the dynamic matrix of the system. Thus the number of
poles of an irreducible system is n.

Definition 1.5

In SISO systems, a system zero is a finite constant z such that Gðs ¼ zÞ ¼ 0.
From (1.11), a system zero is a root of the numerator polynomial
CVadjðsI � LÞV�1B of GðsÞ, of an irreducible system.

In MIMO systems, CVadjðsI � LÞV�1B is not a scalar. Therefore, the
definition of system zeros is more complicated. From Rosenbrock [1973], we
define any finite constant z such that Gðs ¼ zÞ ¼ 0 as ‘‘blocking zero.’’ A
system with blocking zero z has zero response to input u0e

zt for any u0.
We also define any finite constant z such that the rank of Gðs ¼ zÞ is

less than minfm; pg (the minimum of m and p) as ‘‘transmission zero.’’ Thus
a system with transmission zero z and with more outputs than inputs ðm > pÞ
has at least one constant vector u0 such that Gðs ¼ zÞu0 ¼ 0. In other words,
such a system has zero response to input u0e

zt, where u0 must satisfy
Gðs ¼ zÞu0 ¼ 0. Therefore, blocking zero is a special case of transmission
zero. There is no difference between blocking zeros and transmission zeros
in SISO systems.
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There is a clear and simple relationship between system transmission
zeros and the system’s state space model ðA; B; C; DÞ [Chen, 1984]. Because

I 0

CðzI � AÞ�1 �I

� �
zI � A B

C �D

� �
¼

zI � A B

0 Gðs ¼ zÞ

� �
hence

rank½S� 4
¼

rank
zI � A B

C �D

� �
¼ rank

zI � A B

0 Gðs ¼ zÞ

� �
¼ rank½zI � A� þ rank½Gðs ¼ zÞ�
¼ nþminfm; pg ð1:18Þ

In other words, transmission zero z must make the rank of matrix S (which
is formed by state space model parameters) less than nþminfm; pg. This
relation is based on the assumption of irreducible systems so that z cannot
be a system pole and so that rank ½zI � A� is guaranteed to be n.

Example 1.8

Let the transfer function of a system with three outputs and two inputs be

GðsÞ ¼
0 ðsþ 1Þ=ðs2 þ 1Þ

sðsþ 1Þ=ðs2 þ 1Þ ðsþ 1Þðsþ 2Þ=ðs2 þ 2sþ 3Þ
sðsþ 1Þðsþ 2Þ=ðs4 þ 2Þ ðsþ 1Þðsþ 2Þ=ðs2 þ 2sþ 2Þ

24 35
From Definition 1.5, this system has a blocking zero � 1 and two
transmission zeros � 1 and 0, but � 2 is not a transmission zero.

This example shows that when a system has a different number of
inputs and outputs ðp=mÞ, its number of transmission zeros is usually much
less than its number of system poles. However, when a system has the same
number of inputs and outputs ðm ¼ pÞ, its number of transmission zeros is
usually n�m. In addition, if such a system (with m ¼ p) has matrix product
CB nonsingular, then its number of transmission zeros is always n�m.
These properties have been proved based on the determinant of matrix S of
(1.18) [Davison and Wang, 1974].

An interesting property of transmission zeros is as follows. Suppose
there are r transmission zeros of system ðA; B; CÞ, then for any nonsingular
matrix K which approaches infinity, among the n eigenvalues of matrix
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A� BKC, r of them will approach each of the transmission zeros and n� r
of them will approach infinity [Davison, 1978].

Another interesting property of transmission zeros is that when a
system GðsÞ is connected with a dynamic feedback compensator system
HðsÞ, the set of transmission zeros of the overall feedback system equals the
union of the transmission zeros of GðsÞ and the poles of HðsÞ [Patel, 1978].

In addition, we will assign all stable transmission zeros of GðsÞ as the
poles of its corresponding dynamic feedback compensatorHðsÞ (in Chap. 5).
Hence the accurate computation of transmission zeros of a given system is
important.

There are several methods of computing transmission zeros of a given
system [Davison and Wang, 1974; Davison, 1976, 1978; Kouvaritakis and
MacFarlane, 1976; MacFarlane and Karcaniar, 1976; Sinswat et al., 1976].
The following is a brief description of the so-called QZ method [Laub and
Moore, 1978]. This method computes all finite generalized eigenvalues z
such that there exists an nþ p dimensional vector w satisfying

Sw ¼ 0 ð1:19Þ

where matrix S is already defined in (1.18).
Equation (1.19) is valid for the case m5p. The transpose (or the dual)

of (1.19) can be used for the case m4p. The advantage of this method arises
from the existence of a numerically stable algorithm [Moler and Stewart,
1973] for computing the generalized eigenvalues [Laub and Moore, 1978].

We have briefly discussed the properties of system zeros. The
properties of system poles will be discussed in the next chapter, which
shows that the system poles are the most important parameters in
determining a system’s performance.

EXERCISES

1.1 For a linear time-invariant circuit system shown in Fig. 1.9:

(a) Let the currents of the two resistors be the two outputs of this
system, respectively. Find the state space model (1.1) of this
system.

(b) Derive the transfer function model (1.9) of this system.
(c) Plot the linear motion mechanical system which is analogous to

this circuit system. Indicate all signals and elements of this
mechanical system in terms of the corresponding circuit system
signals and elements.
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1.2 Let a controllable canonical form state space model be the dual from
Example 1.6.

A ¼ A0 B ¼ C0 ¼ ½c1; 0 . . . 0�0

C ¼ B0 ¼ ½b01 : . . . : b0n�
0

(a) Plot the block diagram similar to Fig. 1.8.
(b) Prove that c1 6¼ 0 is the necessary and sufficient condition for the

system ðA; B; CÞ to be controllable.
(c) Prove that the transfer functions of ðA; B; CÞ is the transpose of

that from Example 1.6.
1.3 Let a two-output observable canonical form system state space model

be

A ¼
2 3 1

4 5 0

6 7 0

264
375 B ¼

8

9

10

264
375 C ¼

1 0 0

0 1 0

� �

(a) From the description from Example 1.7 (or Definition 5.1), find
the observability indices vi ði ¼ 1; 2Þ.

(b) Following the two-step procedure from Example 1.7, derive the
polynomial matrix fraction description of the transfer function of
this system GðsÞ ¼ D�1ðsÞNðsÞ.

Figure 1.9 A linear time-invariant circuit system.
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(c) Find the poles and zeros (if any) of this system.

Answer : v1 ¼ 2; v2 ¼ 1;DðsÞ ¼ s2 � 2s� 6 �3s� 7

�4 s� 5

� �
NðsÞ ¼

8sþ 10

9

� �

1.4 Repeat 1.3 for the system

A ¼
a b 0

c d 1

e f 0

264
375 B ¼

g h

i j

k l

264
375 C ¼

1 0 0

0 1 0

� �

Answer : v1 ¼ 1; v2 ¼ 2;DðsÞ ¼
s� a �b

�cs� e s2 � ds� f

� �
NðsÞ ¼

g h

is� k jsþ l

� �

1.5 Repeat 1.3 for the system

A ¼

a b 1 0

c d 0 1

e f 0 0

g h 0 0

26664
37775 B ¼

i

j

k

l

26664
37775 C ¼

1 0 0 0

0 1 0 0

� �

Answer : v1 ¼ v2 ¼ 2;DðsÞ ¼ s2 � as� e �bs� f

�cs� g s2 � ds� h

� �
NðsÞ ¼

isþ k

jsþ l

� �

1.6 Repeat 1.3 for the system

A ¼

a b 1 0

c d 0 0

e f 0 1

g h 0 0

26664
37775 B ¼

i

j

k

l

26664
37775 C ¼

1 0 0 0

0 1 0 0

� �

Answer : v1 ¼ 3; v2 ¼ 1
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DðsÞ ¼ s3 � as2 � es� g �bs2 � fs� h

�c s� d

� �
NðsÞ ¼ is2 þ ksþ l

j

� �
1.7 Let two system dynamic matrices be

A1 ¼
�1 1 0
0 �1 �1
0 0 �2

24 35 A2 ¼
�1 0 0
0 �1 1
0 0 �2

24 35
Compute the Jordan form decomposition (1.10) of the two matrices.

1.8 Verify NðsÞ [in GðsÞ ¼ D�1ðsÞNðsÞ] from Examples 6.1 and 6.3,
according to the two-step procedure from Example 1.7.
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2

Single-System Performance and Sensitivity

High system performance and low sensitivity are the two required properties
of control systems. Low sensitivity is defined with respect to the system’s
mathematical model uncertainty and terminal disturbance, and is called
‘‘robustness.’’

Unfortunately, high performance and robustness are usually contra-
dictory to each other—higher performance systems usually have higher
sensitivity and worse robustness properties. Yet both high performance and
high robustness are essential to most practical engineering systems. Usually,
only high-performance systems have serious robustness problems and only
such systems are worthy of controlling. Robustness, which can be considered
as reliability, is also essential in most practical cases. Therefore, both
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performance and sensitivity properties must be studied. This chapter
consists of two sections which study system performance and sensitivity
properties, respectively.

Section 2.1 studies some system properties such as system stability,
quickness, and smoothness of system transient response, which are most
important (and most difficult to achieve) in system performance. This
section explains how these properties are most directly and explicitly
determined by the system poles.

Section 2.2 studies the property of system sensitivity via a novel
perspective of the sensitivities of system poles. A basic result of numerical
linear algebra is that the sensitivity of an eigenvalue is determined by its
corresponding left and right eigenvectors.

2.1 SYSTEM PERFORMANCE

The reason that systems control theory has concentrated mainly on linear
time-invariant systems is that only the mathematical models of this kind of
systems can have general and explicit solutions. Furthermore, only the
general and explicit understanding of the system can be used to guide
generally, systematically, and effectively the complicated control system
design.

The analytical solution of the state space model (1.1a) is, for t > 0,

xðtÞ ¼ eAtxð0Þ þ
Z t

0

eAðt�tÞBu ðtÞ dt ð2:1Þ

where xð0Þ and uðtÞ ð04t4tÞ are given system initial state and system
input, respectively. One way of deriving this result is by taking the inverse
Laplace transform on (1.6a). We call (2.1) the ‘‘complete system response’’
of system state xðtÞ.

Substituting (1.10) into (2.1) and using the Cayley–Hamilton theorem

xðtÞ ¼ VeLtV�1xð0Þ þ
Z t

0

VeLðt�tÞV�1BuðtÞ dt ð2:2Þ

¼
Xq
i¼1

Vie
LitTi

 !
xð0Þ þ

Z t

0

Xq
i¼1

Vie
Liðt�tÞTiBuðtÞ dt ð2:3Þ

Therefore, eLit ði ¼ 1; . . . ; qÞ are the only time function terms related to the
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system in the system response of (2.1)–(2.3). In other words, the eigenvalues
ðLÞ of system dynamic matrix A (or the system poles) are parameters which
most directly and explicitly determine the system response.

Let us analyze all possible waveforms of the function eLit based on the
definitions (1.10) of Jordan blocks Li.

eLit ¼elit; if Li ¼ li ð2:4aÞ

eLit ¼
est cosðotÞ est sinðotÞ
�est sinðotÞ est cosðotÞ

� �
if Li ¼

s o

�o s

� �
ð2:4bÞ

The linear combinations of the elements of this matrix can be simplified as:

aest cosðotÞ þ best sinðotÞ ¼ ða2 þ b2Þ1=2est cos ot� tan�1 b

a

� �� �
where a and b are real numbers.

eLit ¼

1 t t2=2 . . . tn�1=ðn� 1Þ!
0 1 t . . . tn�2=ðn� 2Þ!
0 0 1 . . . tn�3=ðn� 3Þ!
..
. ..

.

0 0 . . . . . . 0 1

2666664

3777775elit ð2:4cÞ

if Li is an n-dimensional bidiagonal matrix of (1.10b).
Figure 2.1 plots all different waveforms of (2.4). In the figure, an

eigenvalue (or a pole) is indicated by a symbol ‘‘x’’ and its coordinative
position, and the corresponding waveform of this eigenvalue is plotted near
that position. We can derive the following important conclusions directly
from Fig. 2.1.

Definition 2.1

A system is asymptotically stable if and only if for any initial state x(0) the
system’s zero-input response eAtxð0Þ converges to zero.

Conclusion 2.1

From Fig. 2.1, a system is asymptotically stable if and only if every system
pole (or dynamic matrix eigenvalue) has a negative real part. We will refer to
‘‘asymptotic stable’’ as ‘‘stable’’ in the rest of this book.
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Definition 2.2

The system response (2.1) of an asymptotically stable system always reaches
a steady state, which is called ‘‘steady state response’’ and which is often the
desired state of response. The system response (2.1) before reaching its
steady state is called ‘‘transient response.’’ Therefore, the faster and the
smoother the transient response, the better (higher) the performance of the
system.

Conclusion 2.2

From (2.1), the transient response is mainly determined by the term eLit.
Some conclusions about system performance can be drawn from Fig. 2.1.

(a) The more negative the real part s of the system poles, especially
the poles with least negative s, the faster the corresponding term

Figure 2.1 Possible system poles and waveforms of their corresponding
system response.
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est converges to zero, and therefore the higher the system
performance.

(b) For complex conjugate system poles, the larger the imaginary
part o of the system poles, the higher the oscillation frequency o
of the corresponding transient response, and the faster that
response reaches its first zero. However, the oscillatory feature of
response is generally undesirable regarding the smoothness
requirement (see Definition 2.2).

(c) Multiple poles generally cause slower and rougher transient
response.

We define stability, and the fastness and smoothness of the system
transient response, as the main measures of system performance. Conclu-
sions 2.1 and 2.2 indicate that the system poles determine system
performance most directly, accurately, and comprehensively.

For the first-order system examples from Example 1.3, the systems are
stable because their only pole l is negative. Furthermore, the more negative
the l, the smaller the time constant j1=lj, and the faster the zero-input
response and zero-state response reach zero and steady state ð¼ �FB=lÞ,
respectively. Furthermore, the first-order systems do not have multiple
eigenvalues. Hence their responses are smooth.

In classical control theory, the system performance is measured by
bandwidth (BW). Assume a second-order SISO system has complex
conjugate poles s+jo0:

GðsÞ ¼ o2
n

½s� ðsþ jo0Þ�½s� ðs� jo0Þ�

¼ o2
n

s2 þ ð�2sÞsþ ðs2 þ o2
0Þ

ð2:5aÞ

4
¼

o2
n

s2 þ 2zonsþ o2
n

where

on ¼ ðs2 þ o2
0Þ

1=2
and z ¼ � s

on
ð0 < z < 1Þ ð2:5bÞ

The magnitude of frequency response jGð joÞj of this system (also
called an ‘‘underdamped system’’) is shown in Fig. 2.2.
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Figure 2.2 shows that as frequency o increases from 0 to infinity, the
function jGð joÞj starts at 1 and eventually decays to 0. The bandwidth is
defined as the frequency o at which jGð joÞj ¼ 1=

ffiffiffi
2

p
&0:707. Figure 2.2

shows that [Chen, 1993]

BW&1:6on ! 0:6on when z ¼ 0:1 ! 1 ð2:6Þ

In other words, BW is proportional with respect to on, or jsj and jo0j.
Therefore from Conclusion 2.2, the wider the bandwidth, the higher the
performance (generally) of the system.

However, relation (2.6) is based on a rather strict assumption (2.5) of
the system, and the indication of BW is indirectly derived from Conclusion
2.2. The bandwidth, although it is simpler to measure, is generally far less
accurate than the system poles in indicating the system performance. If this
tradeoff in accuracy was formerly necessary because of the lack of effective
computational means, the development of computer-aided design (CAD)
capability has obviated this necessity.

Figure 2.2 Frequency response of an underdamped system.
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Example 2.1 Zero-Input Response of two Third-Order Systems

Let the dynamic matrices of two systems be

A1 ¼
1 2 0

�2 �3 0
0 1 �2

24 35 and A2 ¼
�1 0 0
0 �1 0
2 �1 �2

24 35
The two matrices have the same eigenvalues �1;�1, and �2, but different
Jordan forms.

A1 ¼ V1L1T1 ¼
1 0 0

�1 1=2 0

�1 �1=2 1

264
375 �1 1 0

0 �1 0

0 0 �2

264
375 1 0 0

2 2 0

2 1 1

264
375

¼ V1 diagfL11;L12gT1

A2 ¼ V2L2T2 ¼
1 0 0

�1 1=2 0

�1 �1=2 1

264
375 �1 0 0

0 �1 0

0 0 �2

264
375 1 0 0

2 2 0

2 1 1

264
375

¼ V2 diagfL21;L22;L23gT2

From (2.4),

eL1t ¼
e�t te�t 0
0 e�t 0
0 0 e�2t

24 35 and eL2t ¼
e�1 0 0
0 e�t 0
0 0 e�2t

24 35
From (2.1)–(2.2), for a common initial state xð0Þ ¼ 1 2 3½ �0, the zero-
input response for the state xðtÞ is

eA1txð0Þ ¼
e�t þ 6te�t

2e�t � 6te�t

�4e�t � 6te�t þ 7e�2t

264
375 and

eA2txð0Þ ¼
e�t

2e�t

�4e�t þ 7e�2t

264
375

The waveforms of these two functions are shown in Fig. 2.3.
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Figure 2.3 Waveforms of state zero-input responses of two systems with
same poles.
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The second waveform is remarkably better than the first in terms of
both fastness and smoothness. This is caused by the only difference between
the two systems: there is a generalized eigenvector (for eigenvalue �1) for
the first dynamic matrix and none for the second dynamic matrix. This
difference cannot be reflected by the transfer function model GðsÞ.

From (2.2), the difference in the function eLt inevitably makes a
difference in the system’s zero-state response. Hence the state space model
can also describe the zero-state response (the transient part) more explicitly
than the transfer function model, even though the transfer function model is
defined from the system’s zero-state response only.

Example 2.2 Zero-State Response of a Third-Order System

Let

ðA;B;CÞ ¼
�1 3 0
�3 �1 0
0 0 �2

24 35; 0
1
1

24 35; 5=3 0 1
0 5 1

� �0@ 1A
Because matrix A is already in Jordan form, we apply (2.4a, b) directly and
get

eAt ¼
e�t cosð3tÞ e�t sinð3tÞ 0
�e�t sinð3tÞ e�t cosð3tÞ 0

0 0 e�2t

24 35
Then from (2.1), for a unit step input ðuðtÞ ¼ 1; t5 0Þ, the zero-state
response of xðtÞ is

xðtÞ ¼
Z t

0

eAðt�tÞB dt ¼
3=10þ ð1=

ffiffiffiffiffi
10

p
Þe�t cosð3t� 198�Þ

1=10þ ð1=
ffiffiffiffiffi
10

p
Þe�t cosð3t� 108�Þ

1=2� ð1=2Þe�2t

24 35
The waveform of xðtÞ and the corresponding system output yðtÞ4¼ ½y1ðtÞ
y2ðtÞ�0 ¼ CxðtÞ are shown in Fig. 2.4.

The waveforms all start at zero, which conforms to the assumptions of
zero initial state and of finite power input signal. The waveforms of states
x1ðtÞ and x2ðtÞ oscillate with period 2p=o ¼ 2p=3&2 before reaching their
respective steady states 0.3 and 0.1. This feature conforms with Conclusion
2.2 (Part B).

Copyright  2004 by Marcel Dekker, Inc. All Rights Reserved.



www.manaraa.com

The above result on steady state of system output yðtÞ can also be
directly derived from the system’s transfer function model.

Figure 2.4 The zero-state response of system state and of system output,
due to unit step input.
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From (1.9),

GðsÞ ¼CðsI � AÞ�1B

4
¼

g1ðsÞ
g2ðsÞ

� �
¼ 1

ðs2 þ 2sþ 10Þðsþ 2Þ
s2 þ 7sþ 20

6s2 þ 17sþ 20

� �

Figure 2.4 (Continued)
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From (1.7), yðtÞ equals the inverse Laplace transform of YðsÞ ¼ GðsÞUðsÞ
¼ GðsÞ=s (for unit step input). In addition, from the final value theorem of
the Laplace transform, the constant steady state of yðtÞ can be derived
directly as

yðt ) ?Þ ¼ lim
s)0

sYðsÞ ¼ 1 1½ �0

This result is in accordance with Fig. 2.4. This derivation shows that the
classical control theory, which concentrates on system input/output
relations especially at steady state, is easier than the state space control
theory for deriving steady state response.

However, in measuring the transient part of this input/output relation,
the bandwidths of g1ðsÞ and g2ðsÞ (3.815 and 9.21, respectively) are incorrect
because y1ðtÞ and y2ðtÞ reach their steady state at about the same time. In
addition, the waveform of y1ðtÞ is noticeably smoother than that of y2ðtÞ in
Fig. 2.4. Overall, based on the actual step responses y1ðtÞ and y2ðtÞ, system
g1ðsÞ is certainly much more preferable than system g2ðsÞ, yet the
corresponding BW1 is two and a half times narrower than BW2.

2.2 SYSTEM SENSITIVITY AND ROBUSTNESS

Whereas the previous section showed the critical importance of system poles
(eigenvalues of system dynamic matrix) on system performance, this section
is based on a basic result of numerical linear algebra that the sensitivity of
eigenvalues is determined by their corresponding eigenvectors.

Numerical linear algebra, which has not been commonly used in the
existing textbooks on control systems, is a branch of study which
concentrates on the sensitivity of linear algebraic computation with respect
to the initial data variation and computational round-off errors [Fox, 1964].
Because linear algebra is the basic mathematical tool in linear control
systems theory, the results of numerical linear algebra can be used directly in
analyzing linear system sensitivities. Some basic results of numerical linear
algebra have been introduced in Appendix A.

Let us first define the norm kAk of a matrix

A ¼
a11 � � � a1n
..
. ..

.

am1 � � � amn

264
375

The norm of a matrix can provide a scalar measure to the magnitude of the
matrix.
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Before establishing the matrix norm, it is necessary to establish the
norm kxk of a vector x ¼ ½x1; . . . ; xn�0, where the vector elements xi ði ¼
1; . . . ; nÞ can be complex numbers. Like the absolute value of a scalar
variable, the vector norm kxk must have the following three properties
[Chen, 1984]:

1. kxk50 and kxk ¼ 0 if and only if x ¼ 0
2. kaxk4jajkxk, where a is a scalar
3. kxþ yk4kxk þ kyk, where y is also an n-dimensional vector

The third property is also called ‘‘triangular inequality.’’

Definition 2.3

The vector norm kxk is defined as follows:

1. kxk1 ¼ jx1j þ � � � þ jxnj
2. kxk2 ¼ ðjx1j2 þ � � � þ jxnj2Þ1=2 ¼ ðx*xÞ1=2 (‘‘*’’ stands for trans-

pose and complex conjugate operation)
3. kxk? ¼ maxi jxij

In most cases only the norm kxk2 is being used. Therefore kxk is the default
of vector norm kxk2 in this book unless specified otherwise.

Vector norms have the following common and important property
(Cauchy–Schwartz inequality) [Chen, 1984]:

jx*yj ¼ jy*xj4kxkkyk ð2:7Þ

The matrix norm kAk, where the entries of matrix A can be complex
numbers, must also have the following four properties:

1. kAk50 and kAk ¼ 0 if and only if A ¼ 0
2. kaAk ¼ jajkAk, where a is a scalar
3. kAþ Bk4kAk þ kBk, where B is a matrix of same dimension
4. kAxk4kAkkxk ð2:8Þ

Based on the above properties, especially (2.8), there can be three different
definitions of matrix norm kAk according to the three different vector norms
of Definition 2.3, respectively [Chen, 1984].
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Definition 2.4

1. kAk1 ¼ max
j

ja1jj þ � � � þ jamjj
� �

2. kAk2 ¼ maxfðeigenvalue ofðA*AÞÞ1=2g
¼maxfsingular value of Ag

3. kAk? ¼ maxi jai1j þ � � � þ jainjf g
ð2:9Þ

Unless specified otherwise, kAk is the default of kAk2; which is also called
the ‘‘spectrum norm.’’

There is another commonly used matrix norm kAkF , which is called
the ‘‘Frobenius norm’’ and is defined as follows:

4: kAkF ¼
X
i;j

jaij j2
 !1=2

¼ ½TraceðA*AÞ�1=2 ð2:10Þ

where the matrix operator ‘‘Trace’’ stands for the sum of all diagonal
elements.

Based on the singular value decomposition of a matrix with m5n (see
Appendix A, Sec. A.3),

A ¼ USV* ¼ U
S1

0

� �
V*

where S1 ¼ diagfsingular values ofA : siði ¼ 1; . . . ; nÞg;U*U ¼ I ;V*V ¼ I ,
and s15s25 � � �5sn50. Then from (2.9–2.10),

kAkF ¼ ½TraceðS*SÞ�1=2

¼ ðs21 þ � � � þ s2nÞ
1=2 4

ffiffiffi
n

p
s1 ¼

ffiffiffi
n

p
kAk2 ð2:11aÞ

5s1 ¼ kAk2 ð2:11bÞ

�

Equation (2.11) is useful in estimating the matrix spectrum norm.

Definition 2.5

Condition number of a computational problem:
Let A be data and f ðAÞ be the result of a computational problem f ðAÞ.

Let DA be the variation of data A and Df be the corresponding variation of
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result f ðAÞ due to DA such that

f ðAþ DAÞ ¼ f ðAÞ þ Df

Then the condition number kðf Þ of the computational problem f ðAÞ is
defined by the following inequality:

kDf k
kf k 4

kðf ÞkDAk
kAk ð2:12Þ

Therefore, kð f Þ is the relative sensitivity of problem f with respect to the
relative variation of data A. A small kð f Þ implies low sensitivity of problem
f, which is then called a ‘‘well-conditioned problem.’’ On the other hand, a
large kð f Þ implies high sensitivity of the problem f, which is then called an
‘‘ill-conditioned problem’’ [Wilkinson, 1965].

Example 2.3 [Wilkinson, 1965; Tsui, 1983b]

Let the computational problem be the computation of solution x of a set of
linear equations Ax ¼ b, where A and b are given data.

Let Db be the variation of b (no variation of A). Then Aðxþ DxÞ ¼
ðbþ DbÞ implies that

kDxk ¼ kA�1Dbk4kA�1kkDbk

Thus from (2.8),

kAkkxk5kbk;
kDx
kxk 4kAkkA�1k kDbkkbk

From Definition 2.5, this inequality implies that the condition number of
this problem is kAkkA�1k.

Suppose in the same problem that DA is the variation of A (no
variation of b). Then ðAþ DAÞðxþ DxÞ ¼ b implies (assuming kDADxk is
very small):

Dx ¼ A�1ð�DAxÞ

Thus from (2.8), kDxk=kxk4kAkkA�1kkDAk=kAk. From Definition 2.5,
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this inequality again implies that the condition number of this problem is
kAkkA�1k.

Because of the result of Example 2.3, we define the condition number
of a matrix A as

kðAÞ ¼ kAkkA�1k ð2:13Þ

In the following we will first analyze the sensitivity of the eigenvalues of
system dynamic matrix, and then use this result to analyze the sensitivity of
system stability property.

2.2.1 The Sensitivity of Eigenvalues (Robust Performance)

Robust performance is defined as the low sensitivity of system performance
with respect to system model uncertainty and terminal disturbance. Because
Sec. 2.1 indicated that the eigenvalues of system dynamic matrix (or system
poles) most directly and explicitly determine system performance, it is
obvious that the sensitivities of these eigenvalues most directly determine a
system’s robust performance.

From (1.10), V�1AV ¼ L, where matrix L is a Jordan form matrix
with all eigenvalues of matrix A. Therefore, if A becomes Aþ DA, then

V�1ðAþ DAÞV ¼ Lþ V�1DAV D
¼
Lþ DL ð2:14Þ

kDLk4kVkkV�1kkDAk D
¼
kðVÞkDAk ð2:15aÞ

Inequality (2.15a) indicates that the condition number kðVÞ of
eigenvector matrix V can decide the magnitude of kDLk. However, DL is
not necessarily in Jordan form, and hence may not accurately indicate the
actual variation of the eigenvalues.

Based on (2.14), a result using kðVÞ to indicate the variation of
eigenvalues was derived by Wilkinson (1965):

min
i

fjli � ljg D
¼

min
i

fjDlijg4kðVÞkDAk ð2:15bÞ

where li ði ¼ 1; . . . ; nÞ and l are eigenvalues of matrices A and ðAþ DAÞ,
respectively. Because the left-hand side of (2.15b) takes the minimum of the
difference Dli between the eigenvalues of A and Aþ DA, the upper bound
on the right-hand side of (2.15b) does not apply to other Dli’s.

To summarize, from (2.15), it is still reasonable to use the condition
number of eigenvector matrix V of matrix A, kðVÞ, to measure the
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sensitivity of all eigenvalues ðLÞ of matrix A, sðLÞ. In other words, we define

sðLÞ D
¼
kðVÞ ¼ kVkkV�1k ð2:16Þ

even though sðLÞ is not an accurate measure of the variation (sensitivity) of
each individual eigenvalue. The advantage of this measure is that it is valid
for large kDAk [Wilkinson, 1965].

In order to obtain a more accurate measure of the sensitivity of
individual eigenvalues, first-order perturbation analysis is applied and the
following result is obtained under the assumption of small kDAk [Wilkinson,
1965]:

Theorem 2.1

Let li; vi, and ti be the i-th eigenvalue, right and left eigenvectors of matrix
A, respectively ði ¼ 1; . . . ; nÞ. Let li þ Dli be the i-th eigenvalue of matrix
Aþ DA ði ¼ 1; . . . ; nÞ. Then for small enough kDAk,

jDlij4ktikkvikkDAk D
¼
sðliÞkDAk; i ¼ 1; . . . ; n ð2:17Þ

Proof

Let DA ¼ dB, where d is a positive yet small enough scalar variable, and B is
an n6n dimensional matrix. Let liðdÞ and viðdÞði ¼ 1; . . . ; nÞ be the i-th
eigenvalue and eigenvector of matrix Aþ dB, respectively. Then

ðAþ dBÞviðdÞ ¼ liðdÞviðdÞ ð2:18Þ

Without loss of generality, we assume i ¼ 1. From the perturbation theory,

l1ðdÞ ¼ l1 þ k1d þ k2d
2 þ � � � ð2:19aÞ

and

v1ðdÞ ¼ v1 þ ðl21v2 þ � � � þ ln1vnÞd þ ðl22v2 þ � � � þ ln2vnÞd2 þ � � �
ð2:19bÞ

where kj and lij ði ¼ 2; . . . ; n; j ¼ 1; 2; . . .Þ are constants. For small enough d
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(or DA), (2.19) can be simplified as

l1ðdÞ&l1 þ k1d D
¼
l1 þ Dl1 ð2:20aÞ

and

v1ðdÞ&v1 þ ðl21v2 þ � � � þ ln1vnÞd ð2:20bÞ

Substituting (2.20) into (2.18) and from Avi ¼ livi and d2 5 1, we have

½ðl2 � l1Þl21v2 þ � � � þ ðln � l1Þln1vn þ Bv1�d ¼ k1v1d ð2:21Þ

Multiplying t1ðtivj ¼ dijÞ on the left of both sides of (2.21), we have

t1Bv1 ¼ k1

From (2.20a) and (2.8),

jDl1j ¼ jt1Bv1dj4kt1kkv1kkdBk ¼ kt1kkv1kkDAk

The derivation after (2.18) is valid for other eigenvalues and eigenvectors.
Hence the proof.

This theorem shows clearly that the sensitivity of an eigenvalue is
determined by its corresponding left and right eigenvectors. From now on,
we will use the notation sðliÞ to represent the sensitivity of li, even though
sðliÞ is not the condition number of li as defined in (2.13).

Example 2.4

Consider the following two matrices:

A1 ¼

n 1 0 . . . 0

0 n� 1 1 0 ..
.

..

.
0 n� 2 1 ..

.

..

. . .
. . .

. . .
.

0

..

.
2 1

0 0 0 . . . 0 1

2666666666664

3777777777775
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and

A2 ¼

n n 0 . . . 0

0 n� 1 n 0 ..
.

..

.
0 n� 2 n ..

.

..

. . .
. . .

. . .
.

0

..

.
2 n

0 0 0 . . . 0 1

2666666666664

3777777777775
Clearly, the two matrices have the same set of eigenvalues fn; n� 1; . . . ; 1g.
The right and left eigenvector matrices are:

V ¼

1 �x2 x3 �x4 . . . ð�1Þn�1xn

0 1 �x2 x3 . . . ð�1Þn�2xn�1

0 0 1 �x2 . . . ð�1Þn�3xn�2

..

. . .
. . .

. ..
.

..

.
1 �x2

0 0 0 . . . 0 1

2666666666664

3777777777775
and

T ¼

1 x2 x3 . . . xn

0 1 x2 . . . xn�1

0 0 1 . .
. ..

.

..

. . .
. . .

. ..
.

..

.
1 x2

0 0 . . . 0 1

266666666664

377777777775
where

for A1 : xi ¼ xi�1=ði � 1Þ ¼ 1=ði � 1Þ!; i ¼ 2; . . . ; n; ðx1 ¼ 1Þ; or
x2 ¼ 1; x3 ¼ 1=2!; x4 ¼ 1=3!; . . . ; xn ¼ 1=ðn� 1Þ!;

for A2 : xi ¼ nxi�1=ði � 1Þ ¼ ni�1=ði � 1Þ!; i ¼ 2; . . . ; n; ðx1 ¼ 1Þ;
or x2 ¼ n; x3 ¼ n2=2!; . . . ; xn ¼ nn�1=ðn� 1Þ!:

The eigenvector matrix parameters ðxi; i ¼ 1; . . . ; nÞ are much greater
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for A2 than for A1. From (2.17), the sensitivity of the eigenvalues of A2 is
much higher than that of A1.

For example,

sðl1 ¼ nÞ ¼ kt1kkv1k ¼ kvnkktnk ¼ sðlnÞ
¼ ð1þ x22 þ � � � þ x2nÞ

1=2ð1Þ

¼
ð1þ ð1=2Þ2 þ � � � þ 1=ðn� 1Þ!2Þ1=2&1 ðfor A1Þ
ð1þ ðn=2Þ2 þ � � � þ ½nn�1=ðn� 1Þ!�2Þ1=2

&nn�1=ðn� 1Þ! ðfor A2Þ

8><>: ð2:22aÞ

sðln=2 ¼ n=2Þ ¼ ktn=2kkvn=2k ¼ kvðn=2Þþ1kktðn=2Þþ1k ¼ sðlðn=2Þþ1Þ
¼ ð1þ � � � þ x2ðn=2Þþ1Þ

1=2ð1þ � � � þ x2n=2Þ
1=2

&
ð1Þð1Þ ¼ 1 ðfor A1Þ
ðnn=2=ðn=2Þ!Þ2 ðfor A2Þ

(
ð2:22bÞ

The values of sðliÞ are much greater for A2 than for A1. For A1, all
sðliÞ values are close to 1 ði ¼ 1; . . . ; nÞ. Thus every eigenvalue of A1 is
almost the least possibly sensitive to the parameter variation of A1, and the
computations of these eigenvalues are therefore all well conditioned. On the
other hand, the sðliÞ for A2 equals 5.2, 275, and 2:1556106 for i ¼ 1 and
n ¼ 5, 10, and 20 respectively, and equals 6:9446106 and 861012 for i ¼
n=2 and n ¼ 10 and 20, respectively. Thus the eigenvalues (especially ln=2) of
A2 are very sensitive to the parameter variation of A2. Therefore the
computations of the eigenvalues of A2 are ill conditioned.

The difference between matrices A1 and A2 is at the upper diagonal
line. From Example 1.5 and (2.4c), the upper diagonal elements of A1 and
A2 are the coupling links between the eigenvalues of A1 and A2. Therefore
the weaker these coupling links, the smaller the norm of each row of matrix
T ð¼ V�1Þ computed from all columns of matrix V, and the lower the
sensitivity of each eigenvalue.

From another point of view, the weaker the coupling links, the weaker
the effect of the matrix parameter variation on the corresponding
eigenvalues (see Gerschgorin’s theorem [Wilkinson, 1965]). An even more
direct inspection of the original matrices A1 and A2 shows that the smaller
these upper diagonal elements, the closer the matrices to Jordan form, and
therefore the lower the sensitivity of their Jordan forms to the variation of
these two matrices. This observation is not generally valid for other
matrices.
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To summarize, this example shows that decoupling is extremely
effective in lowering eigenvalue sensitivity. It is common sense that if a
system relies more heavily on more system components in order to run, then
that system has higher sensitivity with respect to these system components.
Although the coupled systems usually have higher performance.

The theoretical analysis on the sensitivity of eigenvalues of A1 and A2

can be shown by the following example of DA [Wilkinson, 1965; Chen,
1984]. Let

DA ¼ dB ¼

0 0 . . . 0

..

. ..
. ..

.

0 0 . . . 0
d 0 . . . 0

2664
3775

Then

det½lI � ðA1 þ DAÞ� ¼ ðl� nÞ � � � ðl� 2Þðl� 1Þ þ dð�1Þn�1

and

det½lI � ðA2 þ DAÞ� ¼ ðl� nÞ � � � ðl� 2Þðl� 1Þ þ dð�nÞn�1

Hence the constant coefficient of characteristic polynomial is affected
by the above data variation d (or DA), and this effect is much more serious
for A2 than for A1. A root locus plot (with respect to d) in Chen [1984]
demonstrates the sensitivity of the eigenvalues of A2 vs. d.

Readers can also refer to Wilkinson [1965] for more theoretical
discussions on A2. However, the comparison of A1 and A2 in this book
offers a clearer explanation for understanding the eigenvalue sensitivity of
this example.

2.2.2 The Sensitivity of System Stability (Robust Stability)

Stability is the foremost system property. Therefore the sensitivity of this
property (called ‘‘robust stability’’) with respect to system model uncertainty
is also critically important. Consequently, a generally accurate quantitative
measure of this sensitivity is also essential to guide robust stability analysis
and design.

From Conclusion 2.1, the most basic and direct criterion of system
stability is that every dynamic matrix eigenvalue has a negative real part.
Hence the sensitivity of these eigenvalues with respect to system model
uncertainty (or dynamic matrix variation) should be the most direct and
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critical factor in measuring the sensitivity of system stability (robust
stability).

Let us compare the Routh–Hurwitz criterion of system stability,
where the system characteristic polynomial must be first computed. The
sensitivity of this step of computation can be as high as the direct
computation of eigenvalues (see Wilkinson, 1965 and Examples 1.6 and
2.4). The Routh–Hurwitz criterion requires additional determination based
on the characteristic polynomial coefficients and on the basic stability
criterion of Conclusion 2.1. This indirectness will inevitably reduce the
accuracy of both the stability determination and the measure of robust
stability.

Let us compare another stability criterion, the Nyquist criterion. This
criterion also requires two general steps. The first step plots system
frequency response Gð joÞ ðo ¼ 0??Þ. The second step applies the Nyquist
stability criterion, which is based on the basic criterion of Conclusion 2.1
and on the Cauchy integral theorem, on the plot of step one. Both steps are
indirect with respect to Conclusion 2.1 and will cause inaccuracy in each
step. Stability is an internal system property about the convergence of a time
domain response, while the Nyquist criterion determines this property based
on the information of system’s input/output terminal relation in frequency
domain. Because of this fundamental reason, the Nyquist criterion is very
difficult to apply to multivariable systems [Rosenbrock, 1974; Hung et al.,
1979; Postlethwaite et al., 1982; Doyle et al., 1992], and its corresponding
robust stability measures (gain margin and phase margin) are not generally
accurate [Vidyasagar, 1984].

In this book, the result of sensitivity of system poles of Sec. 2.2.1 is
used to measure robust stability. Compared to the above two robust
stability measures of classical control theory, this measure has not only the
apparent advantage of general accuracy, but also another critical
advantage—the ability to accommodate pole assignment and thus to
guarantee performance. The analysis in Sec. 2.1 shows that system poles can
most directly and explicitly determine the corresponding system perfor-
mance.

As stated in the beginning of this chapter, performance and
robustness are the two contradictory yet critical properties of a practical
engineering system. Therefore, it would be very impractical to concentrate
on only one of these two properties [such as pole assignment only or
sensitivity function ½I � LðsÞ��1 (see Sec. 3.1) only]. The main purpose of
this book is to introduce a new design approach which can really and fully
consider both properties.

There are three existing robust stability measures using the sensitivity
of system poles. In this book they are called M1, M2, and M3. Among the
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three measures, M1 and M2 were developed in the mid 1980s [Kautsky et al.,
1985; Qiu and Davidson, 1986; Juang et al., 1986; Dickman, 1987;
Lewkowicz and Sivan, 1988], and M3 was developed in the early 1990s
[Tsui, 1990, 1994a]. We will analyze and compare the general accuracy and
the optimization feasibility of these three measures.

Let us first introduce these three measures.

M1 ¼ min
04o<?

sðA� joIÞf g; ðs equals the smallest singular valueÞ

ð2:23Þ
M2 ¼ sðLÞ�1jReflngj; ðjReflngj4 � � �4jRefl1gjÞ ð2:24Þ
M3 ¼ min

14i4n
fsðliÞ�1jRefliÞjg ð2:25Þ

where all eigenvalues are assumed stable ðReflig < 0; ViÞ. In addition, we
assume all eigenvalues are already arbitrarily assigned for guaranteed
performance.

We will analyze these three measures in the following. All three
measures are defined such that the more robustly stable the system, the
greater the value of its robust stability measure.

Because �s indicates the smallest possible norm of matrix variation for
a matrix to become singular (see Theorem A.8), M1 equals the smallest
possible matrix variation norm for the dynamic matrix A to have an
unstable and pure imaginary eigenvalue jo. Therefore M1 should be a
generally accurate robust stability measure.

The main drawback of M1 seems to be its difficulty to design. For
example, it is very difficult to design a matrix K such that the M1 of matrix
A�BK is maximized, where matrices ðA; BÞ are given and the eigenvalues
of A�BK are also prespecified to guarantee the desired performance. In the
existing analysis about maximizing M1, the only simple and analytical result
is that M1 will be at its maximum possible value ð¼ jReflngjÞ if sðlnÞ is at its
minimal value ð¼ 1Þ [Lewkowicz and Sivan, 1988]. Unfortunately, this is
impossible to achieve in most cases.

In the measureM2, the term jReflngj is obviously the shortest distance
between the unstable region and the eigenvalues li on Fig. 2.1. M2 equals
this distance divided (or weighted) by the sensitivity of all eigenvalue matrix
L. The lower the sensitivity sðLÞ, the greaterM2. In other words,M2 may be
considered as the weighted distance for ln to become unstable, or as the
likelihood margin for ln to become unstable.

There exist several general and systematic numerical algorithms which
can compute matrix K such that the value of sðLÞ�1 or M2 is maximized,

Copyright  2004 by Marcel Dekker, Inc. All Rights Reserved.



www.manaraa.com

with arbitrarily assigned eigenvalues in matrix A�BK [Kautsky et al., 1985;
MATLAB, 1990]. However, M2 seems to be less accurate in measuring the
likelihood margin for ln to become unstable, because sðLÞ is not an accurate
measure of the sensitivity of ln [see the discussion of (2.14)].

In the definition of measure M3, the likelihood margins for every
eigenvalue to become unstable are considered. Here the likelihood margin
for each li equals jRefligj divided by its corresponding sensitivity
sðliÞ; i ¼ 1; . . . ; n. In practice, the algorithms for maximizing M2 ðor sðLÞ�1

¼ kðVÞ�1Þ can also be used to maximize M3, after adding a weighting factor
jRefligj�1 on each column vi of matrix V ; i ¼ 1; . . . ; n.

Based on the above analysis and some basic principles, there are two
obvious reasons that M3 is generally more accurate than M1 and M2.

First,M1 and M2 consider only the likelihood margin for ln to become
unstable, while the instability of any eigenvalue can cause system instability
(Conclusion 2.1). Therefore M3 measures the robust stability more
completely and more rigorously than M1 and M2.

Second, the sðLÞ of M2 is generally not an accurate measure of
individual eigenvalue sensitivity and is obviously not as accurate as the
sensitivity sðliÞ of li itself in measuring the sensitivity of li; Vi (including
i ¼ n). HenceM2 is too conservative compared toM3. This is reflected in the
following lower bound of M3, even though M3 more completely and
rigorously reflects the instability likelihood of all eigenvalues.

,sðLÞ 4
¼

kVkkV�1k > kvikktik D
¼
sðliÞ51; i ¼ 1; . . . ; n ð2:26Þ

;M2 ¼ sðLÞ�1jReflngj4M34jReflngj ð2:27Þ

It has been proved that M1 shares the same upper and lower bounds with
M3 [Kautsky et al., 1985; Lewkowicz and Sivan, 1988].

From (2.26–2.27), if the overall eigenvalue sensitivity sðLÞ ¼ kðVÞ is at
the lowest possible value ð¼ 1Þ, then all three measures Mi ði ¼ 1; 2; 3Þ will
reach their common highest possible value jReflngj. However, it is
impossible to make sðLÞ ¼ 1 for most cases. In those cases, a lower sðLÞ
does not necessarily imply a higher M1 or M3 [Lewkowicz and Sivan, 1988].
Furthermore, in those cases, (2.27) implies that M1 and M3 have higher
resolution and therefore higher accuracy than M2.
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Example 2.5 [Lewkowicz and Sivan, 1988; Tsui, 1994a]

Let

A1 ¼
�3 0 0
4:5 �2 0
0 0 �1

24 35 and A2 ¼
�3 0 0
1:5 �2 0
3 0 �1

24 35
The two matrices have same eigenvalues but different eigenvectors.

Hence the eigenvalue sensitivity as well as the robust stability are different
for these two matrices.

The eigenstructure decomposition of these two matrices are

A1 ¼ V1L1T1

¼
�0:217 0 0

�0:976 1 0

0 0 1

264
375 �3 0 0

0 �2 0

0 0 �1

264
375 4:61 0 0

4:5 1 0

0 0 1

264
375 ðkt1k ¼ 4:61Þ
ðkt2k ¼ 4:61Þ
ðkt3k ¼ 1Þ

and

A2 ¼ V2L2T2

¼
0:4264 0 0

�0:6396 1 0

�0:6396 0 1

264
375 �3 0 0

0 �2 0

0 0 �1

264
375 2:345 0 0

1:5 1 0

1:5 0 1

264
375 ðkt1k ¼ 2:345Þ
ðkt2k ¼ 1:803Þ
ðkt3k ¼ 1:803Þ

In the above result, the norm of every right eigenvector in V matrix equals
one. Thus from (2.17), the eigenvalue sensitivity sðliÞ equals the norm of the
corresponding left eigenvector ktik, which has been listed along with the
corresponding vector above.

Based on this result, the values of Mi ði ¼ 1; 2; 3Þ are calculated in
Table 2.1.

The inspection of the two matrices shows that unlike in A2, the
ln ð¼ �1Þ in A1 is completely decoupled and thus has sensitivity sð�1Þ ¼ 1.
This feature is reflected byM1, which reaches its maximal value for A1 and is
considered by M3 also. Also, unlike A2, A1 has a large element (4.5) which
causes higher sensitivity of other two adjacent eigenvalues ð�2;�3Þ of A1 as
well as a higher value of sðLÞ. This feature is reflected by a smaller value of
M2 for A1 and is considered by M3 also. Therefore, only M3 can
comprehensively reflect these two conflicting features about robust stability.
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From the definition of M3, for matrix A1, eigenvalue �2 has the
shortest likelihood margin (0.4338) to instability and therefore is most likely
to become unstable, even though the eigenvalue ln ¼ �1 is closest to
unstable region. Thus for matrix A1, M3 has considered accurately the low
sensitivity of its ln while M2 has not, and M3 has considered the high
sensitivity of other eigenvalues while M1 has not.

Overall, matrices A1 and A2 are quite similar—with one element 4.5 in
A1 being divided into two elements (1.5 and 3) in A2. Hence a reasonable
robust stability measure should not differ too much for these two matrices.
We notice that this is the case for M3 but not for M1 or M2.

This example shows quite convincingly that M3 is considerably more
accurate than M1 and M2.

Although maximizing M2 or minimizing sðLÞð¼ kVkkV�1kÞ may not
improve robust stability as directly as maximizing M3, it also implies in a
simple, scalar, and unified sense the improvement of other system aspects
such as the lowering of feedback control gain kKk and the smoothing of
transient response (see Chap. 8 and Kautsky, 1985). Both aspects are very
important, especially when the dynamic matrix eigenvalues are already
assigned.

We have mentioned that the numerical algorithms used to minimize
sðLÞ can also be used to maximize M3. In addition, there is an analytical
method for improving M3. This method is based on the possibility of simple
decoupling of the feedback system eigenstructure into p blocks (p ¼ number
of system inputs). The decoupling is extremely effective in improving the
system’s robustness. For example, the eigenvalue �1 of Example 2.5 is
completely decoupled in matrix A1 and thus has the lowest possible
sensitivity. Example 2.4 also shows convincingly the strong effect of
coupling on eigenvalue sensitivity.

Table 2.1 Robust Stability Measurements of Two Dynamic Matrices

A1 A2

M1 1 0.691
M2 ¼ sðLÞ�1j � 1j 0.1097 0.2014

sð�1Þ�1 1 0.5546
sð�2Þ�1 0.2169 0.5546
sð�3Þ�1 0.2169 0.4264

M3 sð�2Þ�1j � 2j ¼ 0:4338 sð�1Þ�1j � 1j ¼ 0:5546
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CONCLUSION

State space control theory provides distinctly general, accurate, and clear
analysis on linear time-invariant systems, especially their performance and
sensitivity properties. Only this kind of analysis and understanding can be
used to guide generally and effectively the design of complex control
systems. This is the reason that linear time-invariant system control results
form the basis of the study of other systems such as nonlinear, distributive,
and time-varying systems, even though most practical systems belong to the
latter category.

This is also the reason that the development of state space control
theory has always been significant and useful. For example, because of the
lack of accurate measure of system performance and robustness, the direct
design of loop transfer function has not been generally effective (see also the
end of Secs. 3.1 and 9.3). Starting with the next chapter, we will see that
there are basic, practical, and significant design problems which can only
now be solved satisfactorily using state space techniques.

EXERCISES

2.1 Let the dynamic matrices of two systems be

A1 ¼
�1 1 0
0 �1 �1
0 0 �2

24 35 and A2 ¼
�1 0 0
0 �1 1
0 0 �2

24 35

(a) Based on the eigenstructure decomposition of Exercise problem
1.7 and based on (2.4), derive the time function eAit; i ¼ 1; 2.

(b) Derive eAit using eAit ¼ l�1fðsI � Aig�1gði ¼ 1; 2Þ.
(c) Derive zero-input response eAitxið0Þ with xið0Þ ¼ 1 2 3½ �0

ði ¼ 1; 2Þ. Plot and compare the wave forms of these two
responses.

2.2 Repeat 2.1 for the two matrices from Example 2.5.
2.3 Consider the system

A1;B ¼ 0 1 �1½ �0 and C ¼ 1 0 �1
0 1 �1

� �
where matrix A1 is similar to that of 2.1 above.
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(a) Using (2.1) and the result of 2.1, derive the zero-state response of
the two outputs of this system for unit step input.

(b) Using (1.7), yðtÞ ¼ l�1fYzsðsÞ ¼ GðsÞUðsÞ ¼ GðsÞ=sg derive yðtÞ,
where GðsÞ is derived based on (1.9).

(c) Compute the bandwidth for the two elements of GðsÞ.
(d) Plot and compare the waveforms of the two outputs.

2.4 Analyze the robust stability of the two systems from Example 2.1.
Notice that for eigenvalue l within a Jordan block larger than

161, the corresponding sensitivity sðlÞ should be modified from (2.17)
[Golub and Wilkinson, 1976]. A simple method is to add together
sensitivities (2.17) of all eigenvalues within a same Jordan block.

For example, in matrix A1, suppose the first two left and right
eigenvectors are t1; t2; v1; v2 and correspond to a multiple eigenvalue
l1 ð¼ �1Þ in a 262 Jordan block, then

sðl1Þ ¼ kt1kkv1k þ kt2kkv2kð¼ ð1Þð
ffiffiffi
3

p
Þ þ ð

ffiffiffi
8

p
Þð

ffiffiffiffiffiffiffiffi
1=2

p
ÞÞ

2.5 Repeat 2.4 for the two dynamic matrices from 2.1.
2.6 Verify the expression (2.22) from Example 2.4.
2.7 Verify the conclusion from (2.26) to (2.27).
2.8 Repeat Exercises 2.1 and 2.4 for the following dynamic matrices.

Compare the results.

�3 0 0

3 �2 0

1:5 0 �1

264
375; �3 0 0

�3 �2 0

1:5 0 �1

264
375; �3 0 0

2 �2 0

2:5 0 �1

264
375;

�3 0 0

2:5 �2 0

2 0 �1

264
375; �3 0 0

�2 �2 0

2:5 0 �1

264
375
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3

Feedback System Sensitivity

The feedback system discussed in this book consists of two basic subsystem
components—an ‘‘open-loop system,’’ which contains the given ‘‘plant
system,’’ and a feedback controller system, called a ‘‘compensator.’’ Hence
the analysis of such feedback systems is different from that of a single
system.

Of the two critical properties of performance and low sensitivity
(robustness) of feedback systems, sensitivity has been less clearly analyzed in
state space control theory. It is analyzed in this chapter, which is divided
into two sections.

Section 3.1 highlights a concept in classical control theory about
feedback system sensitivity—the decisive role of loop transfer function in

Copyright  2004 by Marcel Dekker, Inc. All Rights Reserved.



www.manaraa.com

the sensitivity of feedback systems. This concept will guide the design
throughout this book, even though the focus remains on state space models
of the systems.

Section 3.2 analyzes the sensitivity properties of three basic and
existing feedback control structures of state space control theory—direct
state feedback, static output feedback, and observer feedback. The emphasis
is on the observer feedback structure, which is more commonly used than
other two structures. A key design requirement on the robustness property
of this structure, called loop transfer recovery (LTR), is introduced.

3.1 SENSITIVITY AND LOOP TRANSFER FUNCTION OF
FEEDBACK SYSTEMS

The basic feedback control structure studied by control systems theory is
shown in Fig. 3.1.

In this system structure, there is a feedback path from the plant system
output YðsÞ to input UðsÞ through a general feedback controller system,
called ‘‘compensator’’ HðsÞ. Here RðsÞ and DðsÞ are Laplace transforms of
an external reference signal rðtÞ and an input disturbance signal dðtÞ,
respectively.

The plant system, which is subject to control, is either GðsÞ itself or a
component system of GðsÞ and with output YðsÞ. In this book, we will
generally treat the plant system as GðsÞ. Hence the controller to be designed
is HðsÞ.

The structure of Fig. 3.1 is very basic. For more complicated control
system configurations, the analysis and design is usually carried out block by
block and module by module, with each block (or module) structured like
Fig. 3.1.

Because input UðsÞ can control the behavior of output YðsÞ, such
input is called ‘‘control input signal.’’ Because the control signal usually

Figure 3.1 The basic structure of feedback (closed-loop) systems.
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requires a large amount of power, there will very likely be disturbance
associated with the generation of UðsÞ. This disturbance is commonly
treated in the system’s mathematical model of Fig. 3.1 as an additional
signal DðsÞ.

The purpose and requirement of control systems is generally the
control of plant system output (or response) YðsÞ so that it can quickly
reach and stabilize to its desired state, such as the desired vehicle and engine
speed, the desired radar and airborne system angle, the desired robot arm
position, the desired container pressure and temperature, etc. The desired
system output state is usually specified by the reference signal RðsÞ. Hence
how well the system output reaches its desired state determines the
performance of the system.

The final steady state of system response is relatively easy to analyze
(using the final value theorem for example) and relatively easy to satisfy via
feedback control design. Hence the transient response properties (such as
the convergent speed) are critical factors to system performance and are the
main challenges of feedback control system design.

The most basic feature of the feedback control system structure of
Fig. 3.1 is that the control signal UðsÞ, which controls signal YðsÞ, is itself
controlled based on YðsÞ. This feedback of YðsÞ to UðsÞ creates a loop
which starts and ends at UðsÞ, and whose transfer function called ‘‘loop
transfer function’’ is

LðsÞ ¼ �HðsÞGðsÞ ð3:1Þ

We therefore call the feedback system a ‘‘closed-loop system.’’ On the other
hand, a system without feedback [or HðsÞ ¼ 0] is called an ‘‘open-loop
system.’’ Figure 3.2 shows a block diagram where the control signal UðsÞ is
not influenced by its control object YðsÞ. The loop transfer function of this
system is

LðsÞ ¼ 0 ð3:2Þ

Figure 3.2 The structure of open-loop systems.
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A main difference between feedback control and control without
feedback concerns the sensitivity to the plant system mathematical model
uncertainty, defined as DGðsÞ, and to the control input disturbance DðsÞ.
This section shows that this difference is determined almost solely by the
loop transfer function LðsÞ, which is created by the feedback configuration
itself.

To simplify the description of this concept, only SISO systems are
studied in this section. However, this basic and simple concept is general to
MIMO systems as well.

3.1.1 Sensitivity to System Model Uncertainty

In most practical situations, the given mathematical model (either state
space or transfer function) of the plant system is inaccurate. This is because
the practical physical system is usually nonlinear, and its parameters are
usually distributive and are difficult to measure accurately. Even for an
initially accurate model, the actual plant system will inevitably experience
wear-out and accidental damage, both of which can make the mathematical
model of the plant system inaccurate.

To summarize, there is an inevitable difference between the actual
plant system and its mathematical model GðsÞ. This difference is called
‘‘model uncertainty’’ and is defined as DGðsÞ. Therefore, it is essential that
the control systems, which are designed based on the given available
mathematical model GðsÞ, have low sensitivity to DGðsÞ.

In single-variable systems, the transfer function from RðsÞ to YðsÞ of
control systems of Figs 3.1 and 3.2 are, respectively

TcðsÞ ¼
GðsÞ

1þHðsÞGðsÞ ð3:3aÞ

and

ToðsÞ ¼ GðsÞ ð3:3bÞ

Let DTðsÞ be the uncertainty of overall control system TðsÞ caused by
DGðsÞ. We will use relative plant system model uncertainty DGðsÞ=GðsÞ and
relative control system uncertainty DTðsÞ=TðsÞ to measure the overall
control system sensitivity vs. plant system model uncertainty.
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Definition 3.1

The sensitivity of a control system TðsÞ to DGðsÞ is defined as

sðTÞjG ¼ DTðsÞ=TðsÞ
DGðsÞ=GðsÞ

				 				 ð3:4aÞ

For small enough DGðsÞ and DTðsÞ,

sðTÞjG&
qTðsÞ GðsÞ
qGðsÞ TðsÞ

				 				 ð3:4bÞ

Equation (3.4b) is the general formula for determining sðTÞjG.
Substituting (3.3a) and (3.3b) into (3.4b), we have

sðTcÞjG ¼ 1

1þHðsÞGðsÞ

				 				 ¼ 1

1� LðsÞ

				 				 ð3:5aÞ

and

sðToÞjG ¼ 1 ð3:5bÞ

A comparison of (3.5a) and (3.5b) shows clearly that the sensitivity to the
plant system model uncertainty of a closed-loop system can be much lower
than that of the open-loop system. The difference is determined solely by
loop transfer function LðsÞ.

Example 3.1 Sensitivity to the Uncertainty of Some
Individual Plant System Parameters

Let

GðsÞ ¼ K

sþ l

and

HðsÞ ¼ 1
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Then from (3.3),

TcðsÞ ¼
K

sþ lþ K

and

ToðsÞ ¼
K

sþ l

Thus from (3.4b),

sðTcÞjK ¼ qTcðsÞ
qK

K

TcðsÞ

				 				 ¼ sþ lþ K � K

ðsþ lþ KÞ2
K

K=ðsþ lþ KÞ

					
					

¼ 1

1� LðsÞ

				 				
sðToÞjK ¼ qToðsÞ

qK
K

ToðsÞ

				 				 ¼ 1

ðsþ lÞ
K

K=ðsþ lÞ

				 				 ¼ 1

sðTcÞjl ¼
qTcðsÞ
ql

l
TcðsÞ

				 				 ¼ �K

ðsþ lþ KÞ2
l

K=ðsþ lþ KÞ

					
					

¼ �l=ðsþ lÞ
1� LðsÞ

				 				
and

sðToÞjl ¼
qToðsÞ
ql

l
ToðsÞ

				 				 ¼ �K

ðsþ lÞ2
l

K=ðsþ lÞ

					
					

¼ �l
ðsþ lÞ

				 				
Therefore, the sensitivity to either plant system parameter K or l of a closed-
loop system equals that of an open-loop system divided by 1� LðsÞ. For
open-loop systems, at s ¼ 0, this sensitivity equals 1 ¼ 100%, which is quite
high.

3.1.2 Sensitivity to Control Input Disturbance

As introduced in the beginning of this section, disturbance DðsÞ associated
with the generation of large power control input UðsÞ is serious and
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inevitable. Therefore, a practical control system must have low sensitivity to
DðsÞ.

In practice, the controller which actually generates and asserts the
control is usually called the ‘‘actuator.’’

From the superposition principle of linear systems, in the presence of
disturbance DðsÞ ð6¼ 0Þ, the closed-loop system (Fig. 3.1) and open-loop
system (Fig. 3.2) responses are

YcðsÞ ¼
GðsÞ

1� LðsÞRðsÞ þ
GðsÞ

1� LðsÞDðsÞ ð3:6aÞ

and

YoðsÞ ¼ GðsÞRðsÞ þ GðsÞDðsÞ ð3:6bÞ

respectively.
If among the respective two terms of (3.6a, b) the first term is

the desired control system response which follows RðsÞ and which is the
response when DðsÞ ¼ 0, then the second term is the deviation from
the desired response and is the sole effect of disturbance DðsÞ. Therefore, the
gain (magnitude of transfer function) of this second term represents
the sensitivity of the corresponding system to DðsÞ. The higher the gain, the
higher the sensitivity to DðsÞ.

Definition 3.2

A system’s sensitivity to its control input disturbance is represented by its
gain from this disturbance to its output.

Similar to the conclusions from Subsection 3.1.1, a comparison of the
second terms of (3.6a) and (3.6b) shows clearly that the sensitivity to control
input disturbance of closed-loop systems can be much lower than that of
open-loop systems. The difference is an additional denominator 1� LðsÞ,
which is determined solely by loop transfer function LðsÞ.

Example 3.2 Sensitivity to Output Measurement Noise

It is important to measure the sensitivity to output measurement noise. In
practical feedback control systems, besides the undesirable effect of control
input disturbance, there is another common and undesirable effect, caused
by output measurement noise. This noise is represented in the mathematical
model as an additional signal NðsÞ to YðsÞ, and in the block diagram of
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Fig. 3.3, which shows a feedback control system with output measurement
noise.

In many practical analog systems, especially nonelectrical systems, the
signal YðsÞ, such as velocity, angle, pressure, and temperature, is very
difficult to measure accurately. In addition, the implementation of feedback
control often requires that the measured analog signal be transformed to a
different analog signal such as an electrical signal. The device that performs
this operation is called a ‘‘transducer.’’ Such operations can also introduce
error. Because the presence of output measurement noise is almost
inevitable, a feedback system must have low sensitivity to such noise.

The purpose of measuring the feedback system output YðsÞ is to help
generate a desirable control UðsÞ, so the undesirable effect of system output
measurement noise is reflected mainly in its effect on UðsÞ.

Applying Mason’s formula to the system in Fig. 3.3, when RðsÞ ¼ 0,

UðsÞ ¼ �HðsÞ
1þHðsÞGðsÞNðsÞ ¼ �HðsÞ

1� LðsÞNðsÞ ð3:7Þ

This is the effect of NðsÞ on UðsÞ. Similar to Definition 3.2, lower magnitude
of the transfer function of (3.7) implies lower sensitivity against NðsÞ.

It is clear from (3.7) that the sensitivity to NðsÞ is very much related to
the loop transfer function LðsÞ. For example, from (3.7), in open-loop
systems which have no feedback ½HðsÞ ¼ LðsÞ ¼ 0� and in which the
measurement of YðsÞ does not affect the system, the sensitivity to the output
measurement noise NðsÞ is zero.

Substituting (3.7) into YðsÞ ¼ GðsÞUðsÞ,

YðsÞ ¼ �GðsÞHðsÞ
1� LðsÞ NðsÞ ¼ LðsÞ

1� LðsÞNðsÞ ð3:8Þ

This is the effect of NðsÞ on system output YðsÞ.

Figure 3.3 Feedback control system with output measurement noise.
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In the analysis of feedback system sensitivity to plant system model
uncertainty and control input disturbance, it seems that the higher the loop
gain jLðsÞj, the lower the sensitivity. However, Example 3.2 shows that a
high jLðsÞj or a large jHðsÞj does not lower the sensitivity to output
measurement noise at all. In fact, it is equally undesirable to indiscriminately
increase the loop gain jLðsÞj because of the following three reasons.

1. A high loop gain is likely to cause feedback system instability,
from root locus results. This is especially true for plant systems
either with pole-zero excess exceeding two or with unstable zeros.

2. A high loop gain jLðsÞj can generally reduce system performance.
From (3.3a) and the definition of bandwidth of Sec. 2.1, a higher
jLðsÞj often implies a lower overall feedback system gain jTcðsÞj
and therefore a narrower bandwidth.

3. A high loop gain or a high controller gain jHðsÞj is more difficult
to implement in practice. A system with higher gain generally
consumes more control energy and is more likely to inflict
disturbance and cause failure.

Because of the above three reasons, the loop gain jLðjoÞj is shaped only at
certain frequency bands. For MIMO systems, the loop gain is represented
by the largest singular value of the p6p dimensional matrix LðjoÞ [Doyle
and Stein, 1981; Zhou et al., 1995].

However, as described in Sec. 2.1, bandwidth is far less direct and far
less generally accurate in reflecting system performance. Subsections 2.2.2
and 3.2.1 (at the end) also indicated that robust stability is far less generally
accurately measured by the loop transfer function based gain margins and
phase margins. In addition, the loop-shaping operation, though it is already
very complicated, is less refined than state space design methods in terms of
how fully the available design freedom is utilized. For example, it seems that
only the gain (but not the phase angle) of loop transfer function is
considered by this operation.

To summarize, the critical factor of feedback system sensitivity is the
system loop transfer function itself, but not the high gain or only the gain, of
this loop transfer function.

3.2 SENSITIVITY OF FEEDBACK SYSTEMS OF MODERN
CONTROL THEORY

Section 3.1 described the critical importance of loop transfer function for
feedback system sensitivity. The same concept will be used to analyze the
sensitivity of three existing and basic feedback control structures of state
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space control theory. These three structures are state feedback, static output
feedback, and observer feedback. Of the three structures, observer feedback
system structure is much more commonly used than the other two.

Because loop transfer function is determined by the internal feedback
system structure, from now on we will let the external system reference
signal rðtÞ ¼ 0. In addition, we will assume that the plant system GðsÞ is
irreducible.

3.2.1 State Feedback Control Systems

The state feedback control systems (or direct state feedback systems) have a
control signal uðtÞ of

uðtÞ ¼ �KxðtÞ ð3:9Þ

where xðtÞ is the system state vector, and K, which is called the ‘‘state
feedback gain’’ or ‘‘state feedback control law,’’ is constant. The block
diagram of this feedback control structure is shown in Fig. 3.4.

It is clear from Fig. 3.4 that the loop transfer function of this system is

LðsÞ ¼ �KðsI � AÞ�1BD
¼
LKxðsÞ ð3:10Þ

Substituting (3.9) into (1.1a), the dynamic equation of this feedback system
becomes

_xxðtÞ ¼ ðA� BKÞxðtÞ þ BrðtÞ ð3:11Þ

Hence matrix A� BK is the dynamic matrix of the corresponding direct
state feedback system, and its eigenvalues are the poles of that feedback
system.

From Sec. 1.1, system state provides the most explicit and detailed
information about that system. Therefore state feedback control, if designed

Figure 3.4 Direct state feedback systems.
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properly, should be most effective in improving system performance and
robustness properties, even though this design is not aimed at shaping the
loop transfer function LKxðsÞ directly.

Theorem 3.1

For any controllable plant system, the direct state feedback control can
assign arbitrary eigenvalues to matrix A� BK , and the direct state feedback
system remains controllable.

Proof

Any controllable system is similar to its corresponding block-controllable
canonical form, which is the dual version ðA0; C0Þ of its corresponding
block-observable canonical form of ðA; CÞ of (1.16).

The form of (1.16) implies that there exists a matrix K 0 such that all
unknown parameters of matrix A� K 0C can be arbitrarily assigned, and
that A� K 0C remains to be in observable canonical form for any K 0. Hence
the eigenvalues of matrix A� K 0C can be arbitrarily assigned and the
system ðA� K 0C; CÞ remains to be observable for any K 0.

From the duality phenomenon, the above conclusions imply that the
eigenvalues of matrix A0 � C0K can be arbitrarily assigned, and that system
ðA0 � C0K ; C0Þ remains to be controllable for any K.

However, matrix A� BK in general cannot preserve the block-
observable canonical form of the original matrix A. Hence direct state
feedback system cannot preserve the observability property of the original
open-loop plant system ðA; B; CÞ.

In addition, eigenvectors can also be assigned if p > 1, thus achieving
robustness (see Sec. 2.2). The explicit design algorithms of state feedback
control for eigenvalue/vector assignment will be introduced in Chap. 8.

Besides the ability to assign arbitrary poles and the corresponding
eigenvectors to the feedback system, state feedback control can also realize a
so called ‘‘linear quadratic optimal control,’’ whose design will be
introduced in Chap. 9. It has been proved that the loop transfer function
LKxðsÞ of such control systems satisfies the ‘‘Kalman inequality’’ such that

½I � LKxð joÞ�*R½I � LKxð joÞ�5R Vo ð3:12aÞ

where R is symmetrical positive definite ðR ¼ R0 > 0Þ [Kalman, 1960].
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Based on (3.12a), it has been proved that for R ¼ rIðr > 0Þ,

si½I � LKxðjoÞ�51 Vo ð3:12bÞ

where si ði ¼ 1; . . . ; pÞ is the i-th singular value of the matrix. From (3.12b),
the values of gain margin and phase margin of the feedback system are
1=2 ! ? and 560�, respectively [Lehtomati et al., 1981].

The SISO case of the above result can be shown in Fig. 3.5.
The shaded area of Fig. 3.5 indicates all possible values of �LKxðjoÞ

that satisfy (3.12b). It is clear that the margin between these values and the
�1 point is at least 1=2 to ? in magnitude, and 608 in phase angle. Since
according to the Nyquist stability criterion, the number of encirclements of
the �1 point determines feedback system stability, this result implies a good
robust stability of quadratic optimal feedback systems.

Notice that at this good robust stability, no large gain (distance to the
origin) of LKxðjoÞ is required at all.

However, as will be introduced at the beginning of Chap. 9, the linear
quadratic optimal control systems can be formulated to have poor
robustness (such as the minimum time problem). Yet the gain margin and
phase margin indicate good robustness for all such systems. This is another
proof that the gain margins and phase margins are not generally accurate
measures of system robustness (see Subsection 2.2.2).

The main drawback of direct state feedback control is that it cannot be
generally implemented. In most practical plant systems, only the terminal
inputs and outputs of the system are directly measurable; not the entire set
of internal system states. In other words, the available information about
most practical systems cannot be as complete and explicit as for system

Figure 3.5 Loop transfer frequency response of single-input quadratic
optimal control systems.
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states. Therefore, direct state feedback control should be considered only as
an ideal and theoretical form of control.

3.2.2 Static Output Feedback Control Systems

In static output feedback control systems, the control signal uðtÞ is

uðtÞ ¼ �KyyðtÞ ¼ �KyCxðtÞ ð3:13Þ

where yðtÞ ¼ CxðtÞ is a system output that is directly measurable and Ky is
constant. The block diagram of this feedback system is shown in Fig. 3.6.

The loop transfer function and the dynamic matrix of this feedback
system are, respectively

LðsÞ ¼ �KyCðsI � AÞ�1B ð3:14Þ

and A� BKyC, which are very similar to that of the direct state feedback
system. The only difference is that the constant gain on xðtÞ is KyC instead
of K, where C is a given system matrix. Hence static output feedback
implements a constrained state feedback control with constraint

K ¼ KyC ð3:15Þ

In other words, K must be a linear combination of the rows of given matrix
C, or K 0 [ RðC0Þ4

¼
range space of C0 (see Subsection A.1.2). Because the

dimension of this space is m, which is usually smaller than n, this constraint
can be serious.

Example 3.3

In a second-order SISO system ðn ¼ 2; p ¼ m ¼ 1Þ, if C is either
[1 0] or [0 1], then from (3.15) the state feedback control law K ¼ ½k1k2�

Figure 3.6 Static output feedback systems.
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realized by the static output feedback must have either k2 ¼ 0 or k1 ¼ 0,
respectively. This situation generally implies a reduction of the effectiveness
of the control from dimension 2 to dimension 1.

If m ¼ n and if C is nonsingular, then (3.15) is no longer a constraint,
and static output feedback becomes direct state feedback in the sense that
xðtÞ ¼ C�1yðtÞ and Ky ¼ KC�1. Therefore, direct state feedback control can
be considered a special case of static output feedback control when C is
nonsingular, and static output feedback control may be called ‘‘generalized
state feedback control,’’ as is done in this book.

The advantage of static output feedback control is its generality
because yðtÞ is directly measurable. Besides, its corresponding loop transfer
function is guaranteed to be �KðsI � AÞ�1B of (3.14) for whatever K ¼
KyC of (3.15). This property is not shared by many other feedback systems
(such as observer feedback systems). Finally, from the same argument of
Theorem 3.1 and its proof, static output feedback control preserves
controllability and observability properties of the original open-loop
system.

The main drawback of static output feedback control is that it is
usually too weak compared with direct state feedback control. This is
because m is usually much smaller than n in practice, which makes the
constraint (3.15) of static output feedback control too severe. For
example, only when m is large enough (as compared to n) such that
mþ p > n, can arbitrary eigenvalues be assigned to the feedback system
dynamic matrix A� BKyC [Kimura, 1975]. Example 3.3 is another such
example.

As a result, the design of static output feedback control is far from
satisfactory [Syrmos et al., 1994]. In this book, static output feedback
control design algorithms for either pole assignment (Algorithm 8.1) or
quadratic optimal control (Algorithm 9.2) are presented in Chaps 8 and 9,
respectively.

3.2.3 Observer Feedback Systems—Loop Transfer Recovery

An observer feedback system does not require the direct observation of all
system states, and implements a generalized state feedback control which is
much stronger than the normal static output feedback control. Therefore
observer feedback control structure overcomes the main drawbacks of both
direct state feedback control structure and static output feedback control
structure; it is the most commonly used control structure in state space
control theory.
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An observer is itself a linear time-invariant dynamic system, which has
the general state space model

_zzðtÞ ¼ FzðtÞ þ LyðtÞ þ TBuðtÞ ð3:16aÞ
�KxðtÞ ¼ �KzzðtÞ � KyyðtÞ ð3:16bÞ

where zðtÞ is the state vector of observer system, B comes from the plant
system state space model ðA; B; CÞ; and other observer parameters
ðF ; T ; L; Kz; KyÞ are free to be designed.

This observer definition is more general than the existing ones. It is
defined from the most basic and general observer function that it has yðtÞ
and uðtÞ as its inputs and KxðtÞ as its output. The many distinct advantages
of this general definition will be made obvious in the rest of this book.

Let us first analyze the conditions for an observer of (3.16) to generate
a desired state feedback control signal KxðtÞ.

Because both xðtÞ and yðtÞ ¼ CxðtÞ are time-varying signals, and
because K and C are constants, it is obvious that to generate KxðtÞ in
(3.16b), the observer state zðtÞ must converge to TxðtÞ for a constant T. This
is the foremost important requirement of observer design.

Theorem 3.2

The necessary and sufficient condition for observer state zðtÞ to converge to
TxðtÞ for a constant T, or for observer output to converge to KxðtÞ for a
constant K, and for any zð0Þ and any xð0Þ, is

T A� F T ¼ L C ð3:17Þ

where all eigenvalues of matrix F must be stable.

Proof [Luenberger, 1971]

From (1.1a),

T _xxðtÞ ¼ TAxðtÞ þ TBuðtÞ ð3:18Þ

Subtracting (3.18) from (3.16a), we have

_zzðtÞ � T _xxðtÞ ¼ FzðtÞ þ LCxðtÞ � TAxðtÞ ð3:19Þ
¼ FzðtÞ � FTxðtÞ þ FTxðtÞ þ LCxðtÞ � TAxðtÞ
¼ F ½zðtÞ � TxðtÞ� ð3:20Þ
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if and only if (3.17) holds. Because the solution of (3.20) is

zðtÞ � TxðtÞ ¼ eFt½zð0Þ � Txð0Þ�

zðtÞ converges to TxðtÞ for any zð0Þ and any xð0Þ if and only if all
eigenvalues of F are stable.

This proof also shows that it is necessary to let the observer gain to
uðtÞ be defined as TB in (3.16a), in order for (3.19) to hold.

After zðtÞ ¼ TxðtÞ is satisfied, replacing this zðtÞ into the output part
of observer (3.16b) yields

K ¼ KZT þ KyC ¼ ½KZ : Ky�
T
C

� �
4
¼

K C ð3:21Þ

Therefore (3.17) (with stable F) and (3.21) together form the necessary and
sufficient conditions for observer (3.16) to generate a desired state feedback
KxðtÞ.

The above introduction of (3.17) and (3.21) shows clearly that the two
conditions have naturally and completely separate physical meanings. More
explicitly, (3.17) determines the dynamic part of observer ðF ; T ; LÞ
exclusively and guarantees the observer state zðtÞ ) TxðtÞ exclusively, while
(3.21) presumes that zðtÞ ) TxðtÞ is already satisfied and determines the
output part of observer (K or K ¼ KC) exclusively. This basic design
concept has not been applied before (except for a very narrow application of
function observer design) and will be emphasized throughout the rest of this
book.

There are many design algorithms that can satisfy (3.17) and (3.21) for
arbitrary (stable) eigenvalues of F and arbitrary K (assuming observable
systems). However, this book will present only one such algorithm
(Algorithm 7.1), which has an additional feature of minimized observer
order. This is because (3.17) and (3.21) have not addressed the critical
robustness property of the observer feedback systems. This property will be
analyzed in the rest of this chapter.

As stated in the beginning of this subsection, observer feedback
systems have been the most commonly used control structure in state space
control theory. Because an observer can generate the state feedback control
signal KxðtÞ ¼ KCxðtÞ [if (3.17) holds] and because the union of observer
poles and eigenvalues of A� BK ¼ A� BKC forms the entire set of
observer feedback system poles [if (3.17) holds, see Theorem 4.1], it has been
presumed that observer feedback systems have the same ideal robustness
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properties as those of the direct state feedback system corresponding
K ¼ KC.

However, in practice since the 1960s, bad robustness properties of
observer feedback systems have commonly been experienced, even though
the observer implements a state feedback control whose corresponding
direct state feedback system is supposed to have ideal robustness properties
(see Subsection 3.2.1). Because robustness with respect to model uncertainty
and control disturbance is critically important for most practical engineering
systems (see Sec. 3.1), state space control theory has not found many
successful practical applications since the 1960s.

At the same time, the application of the polynomial matrix and the
rational polynomial matrix has extended classical control theory into
MIMO systems [Rosenbrock, 1974; Wolovich, 1974; Kaileth, 1980; Chen,
1984; Vidyasagar, 1985]. Using the concept of loop transfer functions,
classical control theory clarifies better than modern control theory the
analysis of feedback system robustness properties (see Sec. 3.1). Further-
more, matrix singular values which can simply and accurately represent the
matrix norm (such as loop transfer function matrix norm or loop gain) have
become practically computable by computers (see Sec. A.3). As a result,
classical control theory, especially in terms of its robust design, has
witnessed significant development during the past two decades [Doyle et al.,
1992]. For example, the H? problem, which may be briefly formulated as

minfmax
o

fk½I � LðjoÞ��1k?gg ðsee Definition 2:4Þ

has received much attention [Zames, 1981; Francis, 1987; Doyle et al., 1989;
Kwakernaak, 1993; Zhou et al., 1995].

Until the end of 1970s, there was a consensus of understanding on the
cause of the problems of bad robustness observer feedback systems. This
understanding was based solely on the perspective of loop transfer functions
[Doyle, 1978]. We will describe this understanding in the following.

The feedback system of the general observer (3.16) can be depicted as
in Fig. 3.7, which shows that an observer can be considered a feedback
compensator HðsÞ with input yðtÞ and output uðtÞ, where

UðsÞ ¼ �HðsÞYðsÞ
¼ �½I þ KZðsI � FÞ�1TB��1½Ky þ KZðsI � FÞ�1L�YðsÞ ð3:22Þ

It should be noticed from (3.16) that the transfer function from signal yðtÞ to
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�KxðtÞ is

HKxðsÞ ¼ �½Ky þ KZðsI � FÞ�1L� ð3:23Þ

which is different from �HðsÞ of (3.22). The difference is caused solely by
the feedback of signal uðtÞ to the observer. If this feedback, which is defined
by its path gain TB and its loop gain KZðsI � FÞ�1TB, equals zero, then
�HðsÞ ¼ HKxðsÞ.

Theorem 3.3

The loop transfer function at the break point �KxðtÞ of Fig. 3.7, LKxðsÞ,
equals that of the corresponding direct state feedback system (3.10), or

LKxðsÞ ¼ �KðsI � AÞ�1B ð3:24Þ

Proof [Tsui, 1988a]

From Fig. 3.7,

LKxðsÞ ¼ HKxðsÞGðsÞ � KZðsI � FÞ�1TB ð3:25aÞ

by (3.23)

¼ �KyGðsÞ � KZðsI � FÞ�1½LGðsÞ þ TB� ð3:25bÞ

Figure 3.7 Block diagram of general observer feedback systems.
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by (1.9)

¼ �½KyC þ KZðsI � FÞ�1ðLC þ sT � TAÞ�ðsI � AÞ�1B

by (3.17)

¼ �½KyC þ KZðsI � FÞ�1ðsI � FÞT �ðsI � AÞ�1B

by (3.21)

¼ �KðsI � AÞ�1B

Figure 3.7 also shows that �KxðtÞ is only an internal signal of
compensator HðsÞ, while uðtÞ is the real analog control signal that is
attributed to the plant system GðsÞ and which is where the disturbance is
introduced (see Subsection 3.1.2). Therefore, the loop transfer function LðsÞ,
which really determines the sensitivity properties of the observer feedback
system, should be the one at break point uðtÞ [Doyle, 1978]. From Fig. 3.7,

LðsÞ ¼ �HðsÞGðsÞ

by (3.22)

¼ �½I þ KZðsI � FÞ�1TB��1½Ky þ KZðsI � FÞ�1L�GðsÞ ð3:26Þ

Because LðsÞ 6¼ LKxðsÞ ¼ �KðsI � AÞ�1B and because loop transfer func-
tion plays a critical role in the feedback system sensitivity, the observer
feedback system has different robustness properties from that of the
corresponding direct state feedback system [Doyle, 1978].

Example 3.4

In order to further understand the difference between the two loop transfer
functions of (3.25) and (3.26), we will analyze two more system diagrams of
observer feedback systems. The first diagram (Fig. 3.8) is called a ‘‘signal
flow diagram.’’

For simplicity of presentation, we may assume the path branch with
gain Ky ¼ 0 and ignore this path branch. Then Fig. 3.8 shows that at node
uðtÞ there is only one loop path. The loop with gain �KZðsI � FÞ�1TB is
attached to this single loop path. In contrast, at node �KxðtÞ, there are two
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loop paths. The loop with gain �KZðsI � FÞ�1TB is an independent loop
path between the two.

The second block diagram (Fig. 3.9) is also common in literature. In
this equivalent block diagram of observer feedback systems,

HyðsÞ ¼ �½Ky þ KZðsI � FÞ�1L� ¼ HKxðsÞ of ð3:23Þ

and

HuðsÞ ¼ �KZðsI � FÞ�1TB ð3:27Þ

We should reach the same conclusion from Figs 3.8 and 3.9 on the loop
transfer functions at nodes uðtÞ and �KxðtÞ. They are

LðsÞ ¼ ½I �HuðsÞ��1HyðsÞGðsÞ
¼ �½I þ KZðsI � FÞ�1TB��1½Ky þ KZðsI � FÞ�1L�GðsÞ ð3:26Þ

Figure 3.8 Signal flow diagram of observer feedback systems.

Figure 3.9 An equivalent block diagram of observer feedback systems.
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and

LKxðsÞ ¼ HyðsÞGðsÞ þHuðsÞ ð3:25aÞ
¼ �KyGðsÞ � KZðsI � FÞ�1½LGðsÞ þ TB� ð3:25bÞ

respectively.

Theorem 3.4

The necessary and sufficient condition for observer feedback system loop
transfer function LðsÞ to be the same as that of the corresponding direct
state feedback system LKxðsÞ is

HuðsÞ ¼ �KZðsI � FÞ�1TB ¼ 0 Vs ð3:28aÞ

For freely designed state feedback gain K [or KZ of (3.21)], (3.28a) becomes

HuðsÞ ¼ �KZðsI � FÞ�1TB ¼ 0 Vs and KZ ð3:28bÞ

The necessary and sufficient condition for (3.28b) is

TB ¼ 0 ð3:29Þ

Proof

Figure 3.7, Example 3.4, and the comparison between (3.25) and (3.26) all
indicate clearly that the difference between LKxðsÞ and LðsÞ is caused solely
by the feedback loop [with gain HuðsÞ]. Therefore, the necessary and
sufficient condition for LðsÞ ¼ LKxðsÞ is HuðsÞ ¼ 0 [or (3.28a)].

Because ðsI � FÞ�1 should be nonsingular Vs and KZ should be freely
designed, TB ¼ 0 is obviously the necessary and sufficient condition for
(3.28b).

Comparing Figs 3.1 and 3.9, this theorem indicates that only the
system structure of Fig. 3.1, which does not have the feedback from input
uðtÞ and which is therefore called the ‘‘output feedback compensator’’ (see
Sec. 4.4), can guarantee the same loop transfer function of the direct state
feedback system.

In papers [Doyle and Stein, 1979, 1981] subsequent to Doyle [1978],
the authors imposed the problem of making LðsÞ ¼ LKxðsÞ, which is called
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‘‘loop transfer recovery’’ (LTR). This problem is clearly an additional
requirement of observer design—the observer is required not only to realize
a desired state feedback control signal, but also to have LðsÞ ¼ LKxðsÞ.
Mathematically speaking, from Theorems 3.2–3.4, the observer is required
to satisfy not only (3.17) and (3.21), but also (3.29) (if the state feedback
control is freely designed).

The LTR requirement can eliminate the basic cause of sensitivity
problems of observer feedback systems and is therefore of great practical
importance to the entire state space control theory.

Unfortunately, for almost all given plant systems, it is impossible to
have an observer that can generate the arbitrarily given state feedback
signal KxðtÞ while satisfying (3.28a) or (3.29) (see Sec. 4.3). For this
reason, this book proposes a new and systematic design approach which is
general for all plant systems. This new approach can design an observer
that generates a constrained state feedback signal KxðtÞ ¼ KCxðtÞ (K is
completely freely designed) that satisfies (3.29) exactly for most plant
systems (see Sec. 4.4) and that satisfies (3.29) in a least-square sense for all
other plant systems.

Although a state observer that can generate the arbitrarily given
KxðtÞ cannot satisfy (3.28a) or (3.29) for almost all plant systems, such an
observer is required by all other LTR design methods. At the other
extreme, the study of every possible KxðtÞ that can be generated by an
observer [satisfying (3.28a), (3.17), and (3.21)] and that can stabilize the
matrix A� BK has been reported [Saberi, 1991]. Obviously, the K (or KZ)
that is constrained on (3.28a), (3.17), (3.21), and stable A� BK is only a
theoretical formulation (or reformulation). The K under this formulation
(KZ is not free) cannot be systematically designed, in contrast to the K that
is constrained only on K ¼ KC (K or KZ are free) of our design (see
Subsection 3.2.2, the paragraph at the end of Sec. 4.2, and the
corresponding technical argument in Sec. 4.4).

SUMMARY

Loop transfer function is a critical factor which determines the feedback
system sensitivity, and requirement (3.29) is necessary and sufficient to
preserve observer feedback system loop transfer function from that of its
corresponding direct state feedback system, for either arbitrarily given or
freely [but with constraint (3.21)] designed state feedback.

State feedback control, either unconstrained or constrained by (3.21),
is the general and the basic form of control of state space control theory,
and is by far the best among all existing basic forms of control.
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The observer (3.16) is the main feedback compensator structure of
state space control theory, but it is required to satisfy (3.17) and
nonsingular C [or (3.21) for all K] in most of the literature. Observers with
additional requirement (3.28a) or (3.29) in the existing literature are very
severely limited. This book introduces a fundamentally new observer
design approach which can satisfy (3.17), (3.21), and (3.29) much more
generally.
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4

A New Feedback Control Design Approach

Chapter 3 analyzed the observer design requirements, which can be outlined
as follows.

To guarantee observer state zðtÞ ) TxðtÞ, we require

TA� FT ¼ LC ðF is stableÞ ð4:1Þ

To guarantee the generation of signal KxðtÞ, we require [assuming
zðtÞ ) TxðtÞ]

K ¼ ½KZ : Ky�
T
C

� �
D
¼
K C ð4:2Þ
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Finally, to realize the same robustness properties of the state feedback
control which can be designed systematically, we require (Theorem 3.3 and
3.4)

TB ¼ 0 ð4:3Þ

The real challenge is how to generally and systematically satisfy these
three requirements. A fundamentally new design approach of satisfying
these three requirements is proposed in this chapter, which is divided into
four sections.

Section 4.1 points out a basic and general observer design concept that
(4.1) should be satisfied separately and before satisfying (4.2) for arbitrary K
(or nonsingular C). In most existing observer design and in all existing LTR
observer design, only state observers are designed which imply the
simultaneous satisfaction of (4.1) and nonsingular C. This basic concept
implies the generation of KxðtÞ directly from zðtÞ ½) TxðtÞ� and yðtÞ ½¼
CxðtÞ� instead of from the explicit xðtÞ ¼ C

�1½zðtÞ0 : yðtÞ0�0. This concept is
used throughout the rest of this book.

Section 4.2 analyzes the poles (or performance) of the observer
feedback system. It proves a revised version of the ‘‘separation property’’
that (4.1) alone (not nonsingular C) is the sufficient condition for observer
feedback system poles being composed of the eigenvalues of F and
A� BKC.

Section 4.3 reviews the current state of existing results of LTR. It
points out that while state observers can be designed generally, the LTR
state observers are very severely limited.

Section 4.4 summarizes the conclusions of the first three sections and
proposes a fundamentally new design approach which satisfies (4.1) and
(4.3) first (not nonsingular C), and which satisfies (4.1)–(4.3) much more
generally, simply, and systematically. The only tradeoff of this new design
approach is that its state feedback KxðtÞ can be constrained on (4.2) because
C may not always be nonsingular. This tradeoff is obviously necessary and
worthwhile in light of the severe drawbacks of the results of Sec. 4.3.

4.1 BASIC DESIGN CONCEPT OF OBSERVERS—DIRECT
GENERATION OF STATE FEEDBACK CONTROL SIGNAL
WITHOUT EXPLICIT SYSTEM STATES

We will use the design examples of three basic observers to explain that
satisfying (4.1) first and then (4.2) keeps with the basic physical meanings of
these two requirements. Because (4.1) alone implies that zðtÞ ) TxðtÞ, this
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separation also implies the direct generation of KxðtÞ in (4.2) from zðtÞ ½)
TxðtÞ� and yðtÞ ½¼ CxðtÞ�.

Example 4.1 Full-Order Identity State Observers

Let T ¼ I and F ¼ A� LC in the observer part (3.16a). Then (4.1) is
obviously satisfied and (3.16a) becomes

_zzðtÞ ¼ ðA� LCÞzðtÞ þ LyðtÞ þ BuðtÞ ð4:4Þ
¼ AzðtÞ þ BuðtÞ þ L½yðtÞ � CzðtÞ� ð4:5Þ

Subtracting (1.1a) from (4.4),

_zzðtÞ � _xxðtÞ ¼ ðA� LCÞ½zðtÞ � xðtÞ� ¼ F ½zðtÞ � xðtÞ�

Therefore, zðtÞ ) xðtÞ if F is stable. Thus we have repeated the proof of
Theorem 3.2.

In the above argument, (4.2) is not involved and (4.1) alone completely
determines the observer (4.4)–(4.5), which generates xðtÞ. Only after zðtÞ )
TxðtÞ is generated do we multiply zðtÞ by K [or let ½KZ : Ky�4¼ K ¼ ½K : 0� in
(3.16b) and (4.2)] in order to generate the desired state feedback Kx(t).

Because parameter T has n rows, this observer has n states, and it is
therefore called ‘‘full order.’’ In addition, if T is not an identity matrix but is
nonsingular, then xðtÞ does not equal zðtÞ but equals T�1zðtÞ. We define any
observer of (3.16) that estimates xðtÞ as a ‘‘state observer.’’ We therefore call
the observer with T ¼ I an ‘‘identity observer’’ and consider it a special case
of full-order state observers.

It is obvious that TB cannot be 0 for a nonsingular T. Therefore, a
full-order state observer cannot satisfy LTR (4.3).

The observer structure of (4.5) is also the structure of Kalman filters
[Anderson, 1979; Balakrishnan, 1984], where L is the filter gain. The
Kalman filter can therefore be considered a special case of full-order identity
state observer.

The full-order identity state observer feedback system has the block
diagram shown in Fig. 4.1.

Example 4.2 Reduced-Order State Observers

Contrary to full-order state observers, the order of a reduced-order state
observer equals n�m and yðtÞ is used in (3.16b) ðKy 6¼ 0Þ. Thus the
parameter T of this observer has only n�m rows and cannot be square.
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As in the design of Example 4.1, (4.1), and zðtÞ ) TxðtÞ must be
satisfied first (see Theorem 3.2). Only then, to generate xðtÞ ¼ IxðtÞ in
(3.16b) or to satisfy

IxðtÞ ¼ ½KZ : Ky�½zðtÞ0 : yðtÞ0�0 ¼ K ½T 0 : C0�0xðtÞ ð4:6Þ

matrix C4¼ ½T 0 : C0�0 must be nonsingular and K ¼ C
�1
. Therefore, in this

design, the requirement (4.2) ðI ¼ KCÞ again comes after (4.1) and is
separated from (4.1).

The reason that this observer can have order lower than n comes from
the utilization of the information of yðtÞ ¼ CxðtÞ in (3.16b), (4.2), and (4.6).
Mathematically speaking, with the addition of m rows of matrix C in matrix
C, the number of rows of T can be reduced from n to n�m in order to make
matrix C square and nonsingular. The reduced-order state observer
feedback system can be depicted as shown in Fig. 4.2.

Figure 4.1 Full-order identity state observer feedback system.

Figure 4.2 Reduced-order state observer feedback system.
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In the formulation (3.16) of observers, the signal KxðtÞ is estimated,
with K being a general matrix. Therefore the state observer that estimates
xðtÞ ¼ IxðtÞ is a special case of the observers of (3.16) in the sense that the
general matrix K of the latter becomes a special identity matrix I of the
former.

Examples 4.1 and 4.2 also show that because matrix I has rank n,
matrix C (which equals T in full-order state observers and ½T 0 : C0�0 in
reduced-order state observers) must be a nonsingular square matrix.
Therefore the number of rows of matrix T or the order of these two types
of state observers must be n and n�m, respectively.

However, after zðtÞ ) TxðtÞ is satisfied by (4.1), the desired state
feedback KxðtÞ can be generated directly from zðtÞ ¼ TxðtÞ and yðtÞ ¼
CxðtÞ without explicit information on xðtÞ. From a linear algebraic point of
view, Eq. (4.2) ðK ¼ KCÞ can be solved without the computation of C

�1
.

More important, for p5 n, which is generally true, a very wide range of
desirable K can be satisfied by (4.2) without a nonsingular C, as long as
K 0 [RðC0Þ, even though a nonsingular C [or the estimation of xðtÞ] is still
required VK . This basic understanding offers the following two possible
significant improvements of observer design.

The first is observer order reduction, because the observer order equals
the number of rows of T in matrix C. We will call the observer that estimates
the desired state feedback KxðtÞ and with minimal order the ‘‘minimal order
observer.’’ The design results of this observer will be reviewed in Example
4.3, and the first systematic and general design algorithm of this observer
[Tsui, 1985] is presented in Chap. 7.

The second, and even more significant, improvement is that not
requiring C to be nonsingular implies that the entire remaining observer
design freedom after (4.1) can be fully used to satisfy (4.3), or to realize the
robustness properties of the state feedback control that the observer is trying
to realize. This is the key concept behind the new design approach, which is
formally proposed in Sec. 4.4 [Tsui, 1987b]. The exact and analytical solution
of (4.1) and (4.3) [Tsui, 1992, 1993b] will be described in Chaps 5 and 6.

It should be emphasized that the single purpose of an observer in
almost all control system applications is to realize a state feedback control
KxðtÞ but not to estimate explicit plant system state xðtÞ. When xðtÞ is
estimated by a state observer, it is multiplied immediately by K (see Figs 4.1
and 4.2).

Definition 4.1

The observer (3.16) that generates the desired KxðtÞ directly [without
generating explicitly xðtÞ] is called the ‘‘function observer.’’ Obviously,
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only function observers can have minimal orders that are lower than
n�m.

Example 4.3 Overview of Minimal Order Function
Observer Design

Order reduction has been an important problem in control systems theory
[Kung, 1981] and high observer order has been a major cause of
impracticality of state space control theory.

Based on the analysis of this section, the only difference between the
minimal order observer and the other observers is at Eq. (4.2):

K ¼ ½KZ : Ky�
T
C

� �
¼ KC

in which the least possible number of rows of matrix T is sought in design
computation. To do this computation generally and systematically, every
row of matrix T in (4.2) must be completely decoupled from each other
and must correspond to only one eigenvalue of matrix F (or only one
observer pole). In addition, the complete freedom of T must also be fully
used in this design computation. Because T must satisfy (4.1) first, the
freedom of T to be used in (4.2) can be considered the remaining freedom
of (4.1).

Although there have been many attempts at minimal order observer
design [Gopinath, 1971; Fortmann and Williamson, 1972; Gupta et al.,
1981; Van Loan, 1984; Fowell et al., 1986], which have been clearly
documented in O’Reilly [1983], the above solution matrix T of (4.1) has not
been derived [Tsui, 1993a]. As a result, it has been necessary to solve (4.1)
and (4.2) together and it has not been possible to solve (4.2) separately and
therefore systematically [Tsui, 1993a]. As a result, the general and systematic
minimal order observer design problem has been considered a difficult and
unsolved problem [Kaileth, 1980, p. 527; Chen, 1984, p. 371].

The above solution matrix T has been derived by Tsui [1985]. Thus the
minimal order observer design has been really and uniquely simplified to the
solving of only (4.2), which is only a set of linear equations. A general and
systematic algorithm of minimal order observer design [or the solving of
(4.2) for minimal number of rows of T] is proposed in Tsui [1985] and is
introduced as Algorithm 7.1 in Chap. 7 of this book.

Minimal order function observer is the only existing observer that
generates the desired KxðtÞ signal directly, without the explicit xðtÞ [or,
satisfying (4.1), without a nonsingular C], and it is the only application of
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this basic design concept. This example shows that this observer can be
generally and systematically designed, based only on a desirable solution of
(4.1) [Tsui, 1985].

The above three examples of existing basic observer design demon-
strate that satisfying (4.1) first without a nonsingular C in (4.2) [or
generating KxðtÞ directly, without generating xðtÞ ¼ C

�1½zðtÞ0 : yðtÞ0�0] fits
the original physical meanings of these two conditions and is in keeping with
the existing basic observer design procedures.

This design concept enables the elimination of the difficult and
unnecessary requirement of complete state estimation or the requirement
that C be nonsingular, and thus enables the possibility of significant
improvements on observer design (one of which is observer order
reduction).

Example 4.3 also demonstrates that this basic concept has been
obscured by the fact that almost all observer results involve state observers
only, and by the previous unsuccessful attempts at the general and
systematic design of minimal order function observers.

4.2 PERFORMANCE OF OBSERVER FEEDBACK SYSTEMS—
SEPARATION PROPERTY

In the previous section, we discussed the design concept of satisfying (4.1)
separately without satisfying a nonsingular matrix C4¼½T

0 : C0�0.
In this section, we will prove that (4.1) alone (not with a nonsingular C)

guarantees that the observer feedback system poles be the eigenvalues of F
and A� BKC. Thus (4.1) alone also guarantees explicitly and to a certain
degree the observer feedback system’s performance (see Sec. 2.1). This is an
essential validation of the new design approach of this book, which seeks the
satisfaction of (4.1) and (4.3) first, without a nonsingular matrix C.

Theorem 4.1 (Separation property)

If (4.1) is satisfied, then the poles of the feedback system that is formed by
the plant system (1.1) and the general observer (3.16) are composed of the
eigenvalues of matrices F of (3.16) and A� BK of (1.1) and (4.2).

Proof [Tsui, 1993b]

Substituting (3.16b) into the plant system input uðtÞ and then substituting
this uðtÞ and yðtÞ ¼ CxðtÞ into the dynamic part of plant system (1.1a) and
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observer (3.16a), the dynamic equation of the observer feedback system is

_xxðtÞ
_zzðtÞ

� �
¼ A� BKyC �BKZ

LC � TBKyC F � TBKZ

� �
xðtÞ
zðtÞ

� �
4
¼
Ac

xðtÞ
zðtÞ

� �
ð4:7Þ

Multiplying

Q�1 ¼ I 0
�T I

� �
and

Q ¼ I 0
T I

� �
on the left and right side of Ac, respectively, we have

Ac ¼ Q�1AcQ ¼ A� BKyC � BKZT �BKZ

�TAþ FT þ LC F

� �
if (4.1)

¼ A� BKC �BKZ

0 F

� �
ð4:8Þ

The eigenvalues of A� BKC and of F will constitute all eigenvalues of Ac of
(4.8), which has the same eigenvalues of Ac.

In the normal and existing state space design practice, either the
eigenvalues of F and A� BKC are assigned without considering the overall
feedback system poles, or the overall system is designed without considering
the poles of its feedback compensator. The separation property guarantees
the overall observer feedback system poles once the eigenvalues of F and
A� BKC are assigned. Therefore from Sec. 2.1, it guarantees explicitly the
overall observer feedback system performance to the degree of those
assigned poles. It also guarantees the poles and the stability of observer
(3.16) from the stability of the overall observer feedback system, in case the
design is carried out from the perspective of the overall feedback systems.

The separation property is thus extremely important and has appeared
in almost all state space control literature, such as O’Reilly [1983].

However, the general observer (3.16) formulation (with generalized
dynamic part and generalized state feedback output) has not really been
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extended to the existing literature. More important, the property that (4.1)
alone (not a nonsingular C) is the sufficient condition of Theorem 4.1 has
not really been clarified in the existing literature either [Tsui, 1993b].

Because in the original version of Theorem 4.1 the parameter KC is
replaced by an arbitrary K, it has been customary to assign the eigenvalues
of F in (4.1) and the eigenvalues of A� BK (3.11) completely separately.
Hence the name ‘‘separation property.’’

However, as will be described in the next section, for most plant
systems, an arbitrarily designed state feedback KxðtÞ cannot be implemen-
ted by an observer with a nonsingular C and with exact LTR [or (4.3)]. The
new design approach of this book fundamentally changes this traditional
design practice by designing the state feedback gain K based on
K ¼ K ½T 0 : C0�0, where observer parameter T satisfies (4.1) and (4.3). This
new design approach is validated partly by the above revised separation
property, which shows that (4.1) alone is the sufficient condition of this
property, while the addition of constraint K ¼ K ½T 0 : C0�0 generalizes this
property from K to K ¼ K ½T 0 : C0�0.

Finally, for the sake of theoretical integrity, we shall point out that the
condition (4.1) is not a necessary condition of Theorem 4.1 for every
possible combination of (C; K ; F ; T ; L). This point can be simply proved
by the following special example.

Example 4.4

Let a matrix Ac and its characteristic polynomial be

jsI � Acj ¼
sI � ðA� BKCÞ BKz

TA� FT � LC sI � F

					
					

¼

s� a �b ..
.

1

�b s� a ..
.

�1

� � � � � � � � � � � � � � � � � � � � � � � �
c c : s� f

											

											
where parameters ða; b; c; f Þ are scalars. Then

jsI � Acj ¼ ðs� f ÞjsI � ðA� BKCÞj þ
s� a �b

c c

				 				þ �b s� a

c c

				 				
¼ðs� f ÞjsI � ðA� BKCÞj ð4:9Þ
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The equality of (4.9) (or separation property) holds even if parameter c 6¼ 0,
or even if (4.1) is not satisfied.

In any practical design, the parameters of ðC; K ; F ; T ; LÞ have to be
designed to satisfy (4.1), (4.3), and a satisfactory A� BKC, but not to fit the
special case of Example 4.4. Thus this argument on the necessity of (4.1) to
Theorem 4.1 is totally meaningless in practice.

This situation is very similar to the argument of Saberi et al. [1991]
that (4.3) is not necessary for exact LTR and for every possible combination
of parameters ðK ; F ; TÞ. This is because the parameters of ðK ; F ; TÞ have
to be designed to satisfy (4.1) and a satisfactory A� BKC, but not to fit
those special cases that satisfy (3.28a) but not (4.3).

4.3 THE CURRENT STATE OF LTR OBSERVER DESIGN

As discussed in Sec. 4.1, besides observer order reduction, a much more
important observer design improvement is the significantly more general
and systematic robustness preservation (or LTR) of observer feedback
systems.

From Theorems 3.3 and 3.4, the requirement of LTR [or (4.3)] can
eliminate the basic cause of sensitivity problems of observer feedback
systems and is therefore of great practical importance. As a result, this
problem has received much attention since its proposition [Sogaard-
Andersen, 1986; Stein and Athans, 1987; Dorato, 1987; Tsui, 1987b; Moore
and Tay, 1989; Saberi and Sannuti, 1990; Liu and Anderson, 1990; Niemann
et al., 1991; Saeki, 1992; Tsui, 1992, 1993b; Saberi et al., 1993; Tsui, 1996a,
b; Tsui, 1998b].

However, the mere proposition and formulation of a problem does not
imply that the problem is solved, and experience shows that the latter can be
much more difficult than the former. Even the derivation of some initial
solutions of a problem does not imply the problem is solved satisfactorily,
and experience also shows that the latter can be much more difficult than the
former. Furthermore, only the theoretical problem with a really satisfactory
solution can have real practical value.

This section shows that all other existing LTR observers are state
observers. While a state observer without the LTR requirement (4.3) can be
generally designed, the state observer with (4.3), which is called the ‘‘exact
LTR state observer,’’ is very severely limited.

It has been proved that to have an exact LTR state observer or to
satisfy (4.1) and (4.3) with arbitrarily given K [or to satisfy (4.1) and (4.3)
with a nonsingular C], the plant system must satisfy either one of the
following two restrictions [Kudva et al., 1980]. These two restrictions are
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originally derived for the existence of the ‘‘unknown input observers.’’ An
unknown input observer is a state observer with zero gain to the plant
system’s unknown input [Wang et al., 1975]. Hence it is equivalent to an
exact LTR state observer, if we consider the plant system gain to the
unknown input signal as matrix B.

The first restriction is that the plant system must have n�m stable
transmission zeros. This is extremely restrictive because most systems with
m 6¼ p do not have that many transmission zeros in the first place (see
Example 1.8 and Davison and Wang, 1974).

The second is a set of three restrictions: (1) minimum-phase (all
transmission zeros are stable), (2) rank ðCBÞ ¼ p, and (3) m5p. This again is
extremely restrictive because it is very hard to require all existing
transmission zeros be stable (see Exercises 4.2 and 4.6), and rank ðCBÞ ¼
p is also not satisfied by many practical systems such as airborne systems.

The above two restrictions can be related by the following property of
transmission zeros [Davison and Wang, 1974]; namely, that almost all
systems with m ¼ p have n�m transmission zeros, and that all systems with
m ¼ p and with rank ðCBÞ ¼ p have n�m transmission zeros. Therefore the
second restriction is a little more general than the first restriction because it
admits some additional plant systems with m > p.

For plant systems not satisfying the above two restrictions, if they are
minimum-phase, then there is an asymptotic LTR state observer for these
systems, while there exist no other unknown input observer results for these
systems because the above two restrictions are necessary conditions of
unknown input observers.

Asymptotic LTR state observers have been widely documented [Doyle
and Stein, 1979; Stein andAthans, 1987; Dorato, 1987;Moore and Tay, 1989;
Saberi and Sannuti, 1990; Niemann et al., 1991; Saberi et al., 1993] and have
been considered the main result of LTR because minimum-phase restriction
is less strict than the above two restrictions for exact LTR state observers.

There are mainly two design approaches for asymptotic LTR state
observers.

The first is valid for minimal-phase systems only, and is to
asymptotically increase the plant system input noise level when designing
the Kalman filter [Doyle and Stein, 1979] or to asymptotically increase the
time scale of state observer poles [Saberi and Sannuti, 1990]. Unfortunately,
this approach inevitably and asymptotically increases the observer gain L.
As discussed in Sec. 3.1 and Shaked and Soroka, (1985); Tahk and Speyer,
(1987); and Fu, (1990), the large gain L is even more harmful to system
sensitivity properties than not having LTR at all.

The second approach is to compute a loop transfer function LðsÞ
whose difference to the target loop transfer function LKxðsÞ has anH? norm
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bound over frequency [Moore and Tay, 1989]. Unfortunately, this bound is
itself generally unpredictable. For example, in the actual design it is ever
increased until a numerical solution of a bounded value Riccati equation
exists—it does not converge to a lower level at all [Weng and Shi, 1998].
Even more critically, at the frequency o of this bound, no consideration is
made and no bound exists for the phase angle of LðjoÞ � LKxðjoÞ.

To summarize, the existing exact LTR state observer is too restrictive,
while the existing asymptotic LTR state observers are far from satisfactory.

The main reason for these unsatisfactory LTR results is the
requirement of state estimation or the requirement of implementing
arbitrarily given state feedback control. Mathematically speaking, C
nonsingular is a difficult yet unnecessary additional requirement [in addition
to necessary conditions (4.1) and (4.3)] to satisfy.

For example, most of the existing LTR results involve Kalman filters.
The Kalman filter design freedom is used almost completely for minimum
variance state estimation [Anderson and Moore, 1979; Balakrishnan, 1984]
and not for LTR. The only remaining design freedom of Kalman filters for
LTR is a scalar plant system input noise level q [Doyle and Stein, 1979]. As q
is increased asymptotically for achieving LTR, the Kalman filter poles must
approach each of the plant system transmission zeros and negative infinity
at Butterworth pattern [Anderson and Moore, 1979]. This is the reason that
the Kalman filter-based exact LTR observer requires n�m stable plant
system transmission zeros [Stein and Athans, 1987; Friedland, 1989], and is
the reason that the asymptotic LTR state observer requires that the plant
system be minimum-phase [Doyle and Stein, 1979, 1981].

Example 4.5 The Unsatisfactory State of the Existing
Asymptotic LTR Result

Let the given plant system be

ðA;B;CÞ ¼ 0 �3
1 �4

� �
;

2
1

� �
; ½ 0 1 �

� �
and

GðsÞ ¼ sþ 2

ðsþ 1Þðsþ 3Þ

which has n�m ¼ 2� 1 stable transmission zero �2.
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Let us design an observer which can implement a quadratic optimal
state feedback

K ¼ ½30� 50�

whose corresponding loop transfer function (3.10) is

LKxðsÞ ¼ �KðsI � AÞ�1B ¼ �ð10sþ 50Þ
ðsþ 1Þðsþ 3Þ

This example was raised by Doyle and Stein [1979], which provided two
types of observer results:

1. A full-order identity state observer with poles �7+ j2:

ðF ¼ A� LC;T ;L;KZ;KyÞ ¼
0 �53
1 �14

� �
; I ;

50
10

� �
;K ; 0

� �
whose corresponding loop transfer function is computed as

LðsÞ ¼ �½1þ KðsI � FÞ�1B��1½0þ KðsI � FÞ�1L�GðsÞ

¼ �100ð10sþ 26Þ
s2 þ 24s� 797

6
sþ 2

ðsþ 1Þðsþ 3Þ

and is very different from LKxðsÞ.
2. A Kalman filter with asymptotic LTR ðq ¼ 100Þ:

ðF ¼ A� LC;T ;L;KZ;KyÞ

¼
0 �206:7

1 �102:4

� �
; I ;

203:7

98:4

� �
;K; 0

� �

whose corresponding loop transfer function is similarly computed as

LðsÞ ¼ �ð1191sþ 5403Þ
s2 þ 112:4sþ 49:7

6
sþ 2

ðsþ 1Þðsþ 3Þ

This is already the best LTR result of Doyle and Stein [1979]. It is achieved
by a high-input noise level q ¼ 100 and the associated large filter gain
ðkLk ¼ 226:2Þ, which is extremely undesirable. The poles of this filter are

Copyright  2004 by Marcel Dekker, Inc. All Rights Reserved.



www.manaraa.com

around �2 and �100. Nonetheless, LðjoÞ is still very different from LKxðjoÞ
at o < 10 (see Fig. 3 of Doyle and Stein, 1979).

The simple and exact LTR result is derived as [Tsui, 1988b]

ðF ;T ;L;KZ;KyÞ ¼ ð�2; ½1� 2�; 1; 30; 10Þ

It can be verified that the corresponding LðsÞ ¼ LKxðsÞ, which is guaranteed
by TB ¼ 0 (see Theorem 3.4). The observer gain L ¼ 1 while the output gain
of this observer ½KZ : Ky� is less than K. It should be noted that there is no
explicit state estimation in this design.

The original example of Doyle and Stein [1979] used the dual
controllable canonical form ðA0; C0; B0Þ to represent the same plant system.
The corresponding state feedback K is ½ 50 10 �, and the corresponding
gains L for the above two observers of Doyle and Stein [1979] were
½ 30 �50 � and ½ 6:9 84:6 �, respectively. Nonetheless, all compatible
transfer functions and loop transfer functions of Example 4.5 and Doyle
and Stein [1979] remain the same.

This example shows that the asymptotic LTR result is far from
satisfactory. It also shows the effectiveness of the design concept of not
explicitly estimating plant system states.

The plant system of Example 4.5 has n�m stable transmission zeros
and therefore satisfies the first of the above two sets of restrictions for exact
LTR. The real advantage of the new design approach (of not requiring state
estimation) of this book is for systems not satisfying these two sets of
restrictions. Several such examples will be illustrated in Sec. 6.2, after the
explicit algorithms of (4.1) and (4.3) are described.

A reason that only state observers [satisfying (4.1) and nonsingular C
together] are involved in the existing LTR results concerns the difficulty in
deriving a really satisfactory solution of (4.1), as was true in the minimal
order observer design (see Example 4.3).

To summarize, the solving of (4.1) and (4.3) [but not nonsingular C]
is not a retreat into a simpler design approach nor an avoidance of
arbitrary state feedback implementation, but a necessary and difficult
step to eliminate the very unsatisfactory state of the existing LTR results,
and a novel step which is enabled only by a technical breakthrough in
the solution of (4.1) [the remaining freedom of (4.1) is fully used to
satisfy (4.3)].
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4.4 A NEW DESIGN APPROACH AND NEW FEEDBACK
STRUCTURE—A DYNAMIC OUTPUT FEEDBACK
COMPENSATOR THAT GENERATES STATE/
GENERALIZED STATE FEEDBACK CONTROL
SIGNAL

The conclusions of the first three sections of this chapter can be listed as
follows.

Conclusion 4.1

Equation (4.1) is a necessary and sufficient condition for an observer (3.16)
to generate a signal KxðtÞ for a constant K, where xðtÞ is the plant system
state vector (Theorem 3.2).

Conclusion 4.2

Equation (4.1) is also the sufficient condition for the observer feedback
system poles to be composed of the eigenvalues of F and of A� BK , where
KxðtÞ is the state feedback generated by the observer (3.16) (Theorem 4.1).
This theorem guarantees the observer feedback system performance.

Conclusion 4.3

For a freely designed state feedback KxðtÞ (K ¼ KC;C ¼ ½T 0 : C0�0 is
determined and K is completely free), the necessary and sufficient condition
for the observer feedback system to realize the robustness properties of this
KxðtÞ is (4.3) (or TB ¼ 0, Theorem 3.4).

Conclusion 4.4

To satisfy (4.1), (4.3), and a nonsingular C, or to have an exact LTR state
observer, the plant system either must have n�m stable transmission zeros
or satisfy (1) minimum-phase, (2) rank ðCBÞ ¼ p, and (3) m5p [Kudva et
al., 1980]. Most practical plant systems do not satisfy these restrictions. The
other existing asymptotic LTR state observer is far from satisfactory either,
mainly because of its asymptotic large gain.

Because of this conclusion, even though the ideally and separately
designed state feedback can always be implemented by a state observer, its
ideal robustness property is lost in the actual observer feedback system in
most cases. This is intolerable because robustness is a key property of most
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engineering systems. Conversely, even though a state observer has generated
the desired state feedback control signal (even optimally in a minimal
variance sense), the purpose of this state observer is also lost because it has
failed to realize the critical robustness properties of the same state feedback
control in a deterministic sense.

The reason for this state of existing results of Conclusion 4.4 can be
interpreted as follows. Because the state feedback control K is designed
separately from the state observers, the state observers are expected to
implement arbitrarily given state feedback. This is proven to be too much of
a requirement if the LTR requirement (4.3) is added.

Let us analyze the above situation from another different perspective.
The direct (and ideal) state feedback is designed based on the dynamic
matrix A� BK or the information of the plant system’s input dynamic part
ðA; BÞ only, and is separated completely from the knowledge of plant
system’s output observation (with key parameter C) and the knowledge of
the observer (with key parameter T) which actually realizes and implements
it. Therefore such design cannot be considered mature and is not based on
complete information. This immaturity is reflected by the fact that the
resulting state feedback control and its robustness property cannot be
actually realized in most cases if the states are not all directly measurable,
even though such a state feedback control is itself ideal and superb (see
Subsection 3.2.1).

Based on the above conclusions and analysis, this book proposes a
fundamentally new design approach. In this new approach, the state
feedback control is designed based on the feedback system dynamic
matrix A� BKC4¼A� BK ½T 0 : C0�0, which comprises the information of
not only the plant system’s input dynamic part ðA; BÞ; but also other
plant system parameter C and observer parameter T. The new state
feedback control is guaranteed of observer implementation, separation
property, and robustness realization for significantly more general cases.
Thus this new approach is mature and is divided naturally into the
following two major steps.

The first step determines the observer dynamic part (3.16a) by solving
(4.1) and using the remaining freedom of (4.1) to best satisfy (4.3). Thus the
resulting observer is able to generate a state feedback signal KxðtÞ with a
constant K ¼ KC (see Conclusion 4.1) and, for whatever this K, the
feedback system poles of this observer are guaranteed to be the eigenvalues
of A� BK and F (see Conclusion 4.2). In addition, every effort has been
made to realize the robustness property of this state feedback control (see
Conclusion 4.3).

The design algorithms of this step are described in Chaps 5 and 6.
Condition (4.1) is satisfied first in Chap. 5 and for all plant systems, and
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(4.3) is then best satisfied in Chap. 6. It is proved in Sec. 6.2 that for all plant
systems either with at least one stable transmission zero or with m > p, the
exact solution of (4.1) and (4.3) can be computed, with the rank of matrix C
also maximized by the available remaining freedom of (4.1) and (4.3). This is
significantly more general than the existing exact LTR state observers, and is
general for most plant systems (see Exercises 4.3 and 4.7). For all other plant
systems, the least square solution of (4.3) can be computed, without large
gain.

The second step fully determines the output part of the observer (3.16b)
by designing the dynamic matrix A� BKC, where K is the completely free
parameter of (3.16b). The loop transfer function LKxðsÞ is indirectly (though
much more effectively) determined by this design (see Chaps 2, 3, 8 and 9).
The explicit design algorithms are described in Chaps 8 and 9.

It should be noted that the design of A� BKC is exactly compatible
mathematically with the static output feedback design A� BKyC of
Subsection 3.2.2. The only difference is that rank ðCÞ ¼ m while rank
ðCÞ ¼ rþm5m, where r is the number of rows of T, or the order of the
observer of the first step.

In addition, because the rank of C of the first step can be between n
and m, this new design approach unifies completely the exact LTR state
observer, which corresponds to rank ðCÞ ¼ maximum n, and the static
output feedback, which corresponds to rank ðCÞ ¼ m ¼ minimum of rank
ðCÞ. This unification will be discussed in Sec. 6.3. In this sense, we also call
the feedback control which is implemented by this new observer as the
‘‘generalized state feedback control.’’

Because (4.3) ðTB ¼ 0Þ is satisfied in the first step of this design
approach, the corresponding observer of (3.16) will have the following state
space model

_zzðtÞ ¼ FzðtÞ þ LyðtÞ ð4:10aÞ
� KxðtÞ ¼ �KZzðtÞ � KyyðtÞ ð4:10bÞ

Because this observer (which is also called ‘‘feedback compensator’’) is
not involved with the plant system input uðtÞ, we call it the ‘‘output feedback
compensator.’’ In addition, compared to static output feedback systems of
Sec. 3.2.2, this compensator has an additional dynamic part with state
zðtÞ ) TxðtÞ, and the control signal produced by this compensator has an
additional term KZzðtÞ ) KZTxðtÞ, which is provided by the above
additional dynamic part. Therefore this compensator completely unifies
the static output feedback as its simplest case and is called a ‘‘dynamic
output feedback compensator.’’
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The feedback system of this compensator is depicted in the block
diagram in Fig. 4.3.

Finally, let us clarify three technical arguments concerning this new
design approach.

First, the ideal compensator does not universally exist in practice. The
significant advantage of this new design approach in very significantly more
general robustness realization (see Exercises 4.2, 4.3, 4.6, and 4.7) certainly
has its price—the constrained and therefore weaker state feedback control
KxðtÞ ¼ KCxðtÞ (if rank ðCÞ < n). This is the most serious criticism that has
been downgrading the new design approach of this book. The following
four points will fully answer this criticism.

1. The existing non-constrained and ideal state feedback control is
designed ignoring the key parameters T of the realizing observer
and the key parameter C of system output measurement. This is
why its critical robustness properties cannot be actually realized
for almost all open loop system conditions (see Sec. 4.3 and Part
(b) of Exercises 4.2 and 4.6). Then what is the actual advantage of
this existing control?

2. Although our generalized state feedback control is a constrained
state feedback control, this constraint (based on C4¼ ½T 0 : C0�0)
itself implies that the design of our control does not ignore the
realization of this control when not all system state variables are
directly measurable. This is why the robustness properties of our
control are fully realized.

3. Although our control is a constrained state feedback control, it
can achieve the very effective high performance and robustness

Figure 4.3 Dynamic output feedback compensator which can implement
state feedback control—the new result of this book.
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control—arbitrary pole assignment and partial eigenvector assign-
ment, for a very large portion of open loop systems (see Exercise
4.8). Notice that the assumption of Exercise 4.8 has been criticized
by many as too unfavorable. In addition, our control can virtually
guarantee the stability of its feedback system (see Exercise 4.9,
which has the same assumption as that of Exercise 4.8.)

4. Although our control is a constrained state feedback control, this
constraint itself enabled the complete unification of the well-
established state feedback control and static output feedback
control (see Sec. 6.3). These two existing controls are the extreme
cases of our control in all basic senses such as the control
constraint [no constraint and most constraint (rank
ðCÞ ¼ minimum m)] and the controller order (maximum n�m
and minimum 0). Then why accepting these very undesirable
extremes while rejecting their very reasonable modifications and
adjustments (our rankðCÞ is maximized by all existing remaining
design freedom)?

Of course for any theoretical result, no matter how practical,
reasonable, and favorable, one can always device a special example to
beat it. For example the key proof of the general effectiveness of our control
is based on the assumption of m ¼ p and n�m transmission zeros (see Point
3 above). A system of m ¼ p generically have n�m transmission zeros,
[Davison and Wang, 1974]. However, this well-known fact does prevent the
publication of a comment, which uses a single special system example with
m ¼ p but without transmission zeros, to criticize this new design approach.
The well known fact that even under this cooked-up special example, our
design result is still much better than the existing ones, does not prevent the
publication and the subsequent quotation of this comment either [Tsui,
1996b].

To conclude, the criticism of this new design approach that it cannot
have both ideal control and full realization of this control under all open
loop system conditions, and the rejection of this new design approach
because of this criticism, is unrealistic and unfair.

Second, this new design approach naturally answers another design
problem, that is, given a plant system ðA; B; CÞ, determine the state
feedback gain K which can stabilize the matrix A� BK and which can be
realized by an observer with LðsÞ ¼ LKxðsÞ. The answer provided by this
new design approach is that A� BKC is stabilizable, where C is fully
determined. However, another answer to this problem is that K must
stabilize matrix A� BK and satisfy (3.28a) [Saberi et al., 1991]. As described
in Theorem 3.4, some special K which can stabilize A� BK may satisfy
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(3.28a) but not ð3:29Þ ¼ ð4:3Þ. In other words, this special K cannot be
derived by this new design approach which is based on (4.3), or (4.3) is not
as necessary as (3.28a).

However, as discussed following Theorem 3.4, the design of K that
stabilizes A� BK must also be constrained by (4.1), (4.2), and (3.28a). Such
a design is obviously a theoretical formulation or reformulation only, but
impossible to find a direct, systematic, and general solution because K is
heavily constrained (KZ or K is constrained). On the other hand, the design
of our K to stabilize A� BK is constrained only by K ¼ KC (K is not
constrained), and a direct, systematic, and general solution of this design can
be derived but is also difficult enough (see Syrmos et al., 1994 and Secs 8.1.3
and 8.1.4). In addition, Theorem 3.4 shows that for a free K , our (4.3) is an
equivalent of (3.28a).

This situation is very similar to the theoretical argument on the
necessity of (4.1) to Separation Property (Theorem 4.1). In a challenging
design, the system parameters (including K) simply cannot be cooked to fit
the special case of Example 4.4 in which (4.1) is unnecessary to Theorem 4.1.
Similarly, the cooking up of the system parameters to fit a special case that
satisfies (3.28a) but not (4.3), although arguable theoretically, is totally
meaningless in practical design.

To conclude, the criticism that the formulation (4.3) of this new design
approach is not as necessary as (3.28a) for some special cases—and the
rejection of this new design approach because of this criticism—ignores the
basic difference between the systematic and practical design (in which at
least K should be free) and the theoretical formulation or reformulation,
and is therefore unrealistic and unreasonable.

Third and finally, the dynamic output feedback compensator structure
has certainly appeared before. For example, some such compensators have
been designed for eigenstructure assignment [Misra and Patel, 1989; Duan,
1993b], and some others have been designed from the perspective of LTR
[Chen et al., 1991].

However, none of these existing results satisfies separation property
generally. Because (4.1) is the sufficient condition of separation property
(Theorem 4.1) and the necessary and sufficient condition for the
compensator to generate a state feedback signal KxðtÞ for a constant K,
the other existing dynamic output feedback compensators cannot generate a
signal KxðtÞ for a constant K. Not satisfying the separation property also
implies the possibility of an unstable compensator, even though the overall
feedback system is designed satisfactorily.

To conclude, generating a signal KxðtÞ for a constant K is the
fundamental feature of existing state space control structures considered to
be well established (such as direct state feedback, static output feedback,

Copyright  2004 by Marcel Dekker, Inc. All Rights Reserved.



www.manaraa.com

and observer feedback structures, see Subsections 3.2.1–3.2.3) because it has
several inherent properties and advantages. Because the existing dynamic
output feedback compensator cannot generate KxðtÞ for a constant K, only
the dynamic output feedback compensator of this book can be considered as
well established [see Tsui, 1998b].

With the design approach of this book now formulated, the design
algorithms and solutions to the design problems and formulations imposed
by this approach will be described in the next five chapters (especially Chaps
5 and 6). The purpose is to design a controller with general feedback system
performance and robustness against model uncertainty and input dis-
turbance.

EXERCISES

4.1 Verify the results of Example 4.5, including its dual version.
4.2 It is very useful to measure the strictness of a constraint or a condition,

by the probability of the plant systems that satisfy this constraint/
condition. To derive a simple expression of this probability, we need to
make the following two assumptions on the open-loop systems. These
two open-loop system-based assumptions are unbiased in the sense
that a good (or bad) assumption is equally good (or bad) to all design
algorithms. An assumption that is much more favorable than that of
Exercise 4.2 will be used for starting Exercise 4.6.

1. Let pz be the constant probability for each plant system
transmission zero to be stable. We assume pz ¼ 1=2 so that each
plant system transmission zero is equally likely to be stable or
unstable. This assumption is reasonable because the plant system
parameters are supposed to be randomly given (so are the values
and positions of plant system transmission zeros), and because the
stable and unstable regions are almost equally sized.

2. We assume m ¼ p so that the number of system transmission zeros
is simply n�m [Davison and Wang, 1974] and so that the rank
ðC4¼ ½T 0 : C0�0Þ is simply mþ r, where r is the number of stable
transmission zeros out of the n�m transmission zeros.

(a) Based on this assumption, compute the Pr as the probability of r
stable transmission zeros out of n�m transmission zeros.
Pr ¼ ½r : n�m�ðpzÞ

rð1� pzÞ
n�r, where ½r : n�m� is the combina-

tion of r elements out of n�m elements.
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Answer:

n � m ¼ 1 2 3 4 5 6 7 8 9
r

0 1/2 1/22 1/23 1/24 1/25 1/26 1/27 1/28 1/29

1 1/2 2/22 3/23 4/24 5/25 6/26 7/27 8/28 9/29

2 1/22 3/23 6/24 10/25 15/26 21/27 28/28 36/29

3 1/23 4/24 10/25 20/26 35/27 56/28 84/29

4 1/24 5/25 15/26 35/27 70/28 126/29

5 1/25 6/26 21/27 56/28 126/29

6 1/26 7/27 28/28 84/29

7 1/27 8/28 36/29

8 1/28 9/29

9 1/29

(b) Based on the result of Part (a), find the probability of minimum-
phase ðr ¼ n�mÞ for n�m ¼ 1 to 8.

Answer:
Pn�m ¼ 0:5; 0:25; 0:125; 0:0625; 0:03125; 0:0156; 0:0078; 0:0036. This
probability is too low (and rapidly lower as n�m increases) to be
acceptable.

4.3 One of the sufficient conditions of the new design approach of this
book is at least one stable transmission zero (r > 0, see Conclusion
6.1). Based on the assumption and result of 4.2, calculate the
probability of r > 0 for n�m ¼ 1 to 8, and compare this probability
with the probability of minimum-phase Pn�m of Part (b) of 4.2.
Answer:
Pðr > 0Þ ¼ 1� P0 ¼ 0.5, 0.75, 0.875, 0.9375, 0.9688, 0.9844, 0.9922,
0.9964:
The probability Pðr > 0Þ of this new design approach is almost 100%
as soon as n�m is > 3, and is very significantly greater than Pn�m

(probability of minimum-phase, one of the necessary conditions of the
existing LTR results).

4.4 The sufficient condition for the generalized state feedback control of
this book to assign arbitrarily given poles and some eigenvectors is
rþmþ p > n, or r > n�m� p [see (6.19) or Step 2 of Algorithm 8.1].
Based on the assumption and result of 4.2, calculate the probability of
r > n�m� p ð¼ 100% if n�m� p < 0Þ.
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Answer:

n ¼ 3 4 5 6 7 8 9 10
m ¼ p ¼ % % % % % % % %

2 100 75 50 31.25 18.75 10.94 6.25 3.52
3 100 100 100 87.5 68.75 50 34.38 22.66
4 100 100 100 100 100 93.75 81.25 65.63

Compared to the popular static output feedback control, the
probability to achieve this arbitrary pole assignment and partial
eigenvector assignment is 0% in the above table if the number is not
100%. Thus the improvement of our generalized state feedback control
from the static output feedback control is very significant.

4.5 The sufficient condition for the generalized state feedback control of
this book to assign arbitrary poles and to guarantee stability is
ðrþmÞp > n or r > n=p�m [see (6.18), Adjustment 2 of Sec. 8.1.4,
and Wang, 1996]. Based on the assumption and result of 4.2, calculate
the probability of r > n=p�m ð¼ 100% if n=p�m < 0Þ.
Answer:

n ¼ 3 4 5 6 7 8 9 10 11 12
m ¼ p ¼ % % % % % % % % % %

2 100 75 88 69 81 66 77 63 75
3 100 100 100 100 100 100 98 99 99þ 98

The probability is very high as soon as m is increased higher than 2,
and decreases very slowly so that no substantial decrease can be shown
in the above table. For example, it can be calculated that when n ¼ 16,
the probability is still 98% for m ¼ 3, and that when n ¼ 26 the
probability is still 99.7% for m ¼ 4. This result indicates that the great
majority of the open loop systems can be guaranteed of arbitrary pole
assignment and stabilization by our generalized state feedback control.

Compared to the popular static output feedback control, the
probability to achieve this arbitrary pole assignment is 0% in the above
table if the number is not 100%. Thus the improvement of our
generalized state feedback control from the static output feedback
control is very significant.

4.6 Repeat 4.2 by changing pz to 3/4. This new pz implies that each plant
system transmission zero is three times more likely to be stable than to
be unstable. This pz is significantly more favorable than the half-and-
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half pz of 4.2 to 4.5, even though that old pz is still reasonable (see 4.2).
Therefore we may assume that most of the practical values of pz would
fall between these two values of pz.

(a) Answer:
Pr ¼ ðassume pz ¼ 3=4Þ

n � m ¼ 1 2 3 4 5 6 7 8
r

0 1/4 1/42 1/43 1/44 1/45 1/46 1/47 1/48

1 3/4 6/42 9/43 12/44 15/45 18/46 21/47 24/48

2 9/42 27/43 54/44 90/45 135/46 189/47 252/48

3 27/43 108/44 270/45 540/46 945/47 1,512/48

4 81/44 405/45 1,215/46 2,835/47 5,670/48

5 243/45 1,458/46 5,103/47 13,608/48

6 729/46 5,103/47 20,412/48

7 2,187/47 17,496/48

8 6,561/48

(b) Based on the result of Part (a), find the probability of minimum-
phase ðr ¼ n�mÞ for n�m ¼ 1 to 8.

Answer:
Pn�m ¼ 0:75; 0:56; 0:42; 0:32; 0:24; 0:18; 0:13; 0:1.

Although much higher than the corresponding probabilities of
Exercise 4.2, the Pn�m is still lower than 1/2 as soon as n�m > 2, and
is decreasing as n�m increases.

4.7 One of the sufficient conditions of the new design approach of this
book is at least one stable transmission zero (r> 0, see Conclusion 6.1).
Based on the assumption and result of 4.6, calculate the probability of
r> 0 for n�m¼ 1 to 8, and compare this probability with the
probability of minimum-phase Pn�m of Part b of 4.6.
Answer:
Pðr > 0Þ ¼ 1� P0 ¼ 0:75; 0:9375; 0:9844; 0:9964; . . .
The probability Pðr> 0Þ of this new design approach is almost 100%
as soon as n�m>1, and is very significantly greater that Pn�m

(probability of minimum-phase, one of the necessary conditions of the
existing LTR designs).

4.8 The sufficient condition for the generalized state feedback control of
this book to assign arbitrarily given poles and some eigenvectors is
rþmþ p> n, or r> n�m� p (see (6.19) or Step 2 of Algorithm 8.1).
Based on the assumption and result of 4.6, calculate the probability of
r> n�m� p ð¼ 100% if n�m� p< 0Þ:
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n ¼ 3 4 5 6 7 8 9 10
m ¼ p ¼ % % % % % % % %

2 100 94 84 74 63 53 44 37
3 100 100 100 98 97 90 83 76
4 100 100 100 100 100 99.6 98 96

Compare to the popular static output feedback control, the
probability to achieve this arbitrary pole assignment and partial
eigenvector assignment is 0% in the above table if the number is not
100%. Thus the improvement of our generalized state feedback control
from the static output feedback control is very significant, is much
more significant than that of Exercise 4.4, and makes this very effective
and difficult design goal (see Chaps 8 and 9) achievable to a very large
portion of practical systems. This table of data should be most
relevant among all tables, to the practical and current high
performance and robustness system design.

4.9 The sufficient condition for the generalized state feedback control
of this book to assign arbitrary poles and to guarantee stability is
ðrþmÞp> n or r> n/p�m [see (6.18), Adjustment 2 of Sec. 8.1.4, and
Wang, 1996]. Based on the assumption and result of 4.6, calculate the
probability of r> n/p�m ð¼ 100% in n/p�m< 0Þ.
Answer:

n ¼ 3 4 5 6 7 8 9 10 11 12
m ¼ p ¼ % % % % % % % % % %

2 100 94 98 95 98 96 99 97
3 100 100 100 100 100 100 99þ 99þ 99þ 99þ

The probability is almost all 100%, and does not decrease as n increases.
This result indicates that arbitrary pole assignment and stabilization are
virtually guaranteed by our generalized state feedback control.

Compare to the popular static output feedback control, the
probability to achieve this arbitrary pole assignment is 0% in the above
table if the number is not 100%. Thus the improvement of our generalized
state feedback control from the static output feedback control is very
significant and much more significant than the improvement of Exercise 4.5
(which is based on a less favorable assumption of 4.2).
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5

Solution of Matrix Equation TA� FT ¼ LC

Chapter 4 proposed the new design approach of satisfying (4.1) and (4.3)
first, and explained the necessity and advantages of this approach. The
problem of solving (4.1) and (4.3) was first raised in Tsui [1987b]. Its
satisfactory solution appeared in Tsui [1992], much delayed from its first
verbal presentation at the 1990 American Control Conference. This solution
has made this new design approach possible [Tsui, 2000].

The design algorithms of (4.1) and (4.3) are presented in Chaps 5 and
6, respectively. Chapter 5 has two sections.

Section 5.1 introduces the algorithm for computing the block-
observable Hessenberg form of the plant system’s state space model.
Although this computation is unnecessary for the analytical solution of
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(4.1), it significantly improves the numerical computation of this solution,
and naturally separates the observable part from the unobservable part of
the plant system.

Section 5.2 presents the solution of (4.1). It demonstrates also the
analytical and computational advantages of this solution over other existing
solutions of (4.1).

5.1 COMPUTATION OF A SYSTEM’S OBSERVABLE
HESSENBERG FORM

5.1.1 Single-Output Systems

The Hessenberg form matrix is defined as follows:

A ¼

x * 0 . . . 0
x x * 0 :

: . .
. . .

.
:

: 0
: x *

x . . . . . . x

266666664

377777775 ð5:1Þ

where the elements ‘‘x’’ are arbitrary and the elements ‘‘*’’ are nonzero. The
matrix of (5.1) is also called the ‘‘lower Hessenberg form’’ matrix. The
transpose of the matrix form (5.1) is called the ‘‘upper Hessenberg form.’’

The Hessenberg form is the simplest possible matrix form which can
be computed from a general matrix by orthogonal matrix operation without
iteration. For example the Schur triangular form, which differs from the
Hessenberg form by having all ‘‘*’’ entries of (5.1) equal 0, is computed by
iterative methods (QR method).

In the established computational algorithms of some basic numerical
linear algebra problems, whether in the QR method of computing matrix
eigenstructure decomposition [Wilkinson, 1965] and singular value decom-
position [Golub and Reinsch, 1970], or in the computation of solution of the
Sylvester equation [Golub et al., 1979] and the Riccati equation (Laub, 1979,
Sec. 8.1), the computation of the Hessenberg form has always been the first
step [Laub and Linnemann, 1986]. As the first step of the design algorithm
for solving (4.1), a special form of system matrix ðA; CÞ called ‘‘observable
Hessenberg form,’’ in which matrix A is in the lower Hessenberg form of
(5.1), is also computed [Van Dooren et al., 1978; Van Dooren, 1981]. The
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single-output case of this form is

CH
. . . ::
H 0AH

24 35 ¼

* 0 . . . 0
. . . . . . . . . . . . . . .
x * 0 . . . 0
x x * 0 :

: . .
. . .

.
0

: x *

x . . . x x

26666666664

37777777775
ð5:2Þ

where matrix H is an unitary similarity transformation matrix ðH 0H ¼ IÞ
which transforms the plant system matrix pair ðA; CÞ into the form of (5.2).

The matrix H and its result (5.2) can be computed by the following
algorithm.

Algorithm 5.1 Computation of Single-Output Observable
Hessenberg Form System Matrix

Step 1: Let j ¼ 1;H ¼ I ; c1 ¼ C, and A1 ¼ A.
Step 2: Compute the unitary matrix Hj such that cjHj ¼ ½ cj; 0 . . . 0 �

(see Appendix A, Sec. 2).
Step 3: Compute

H 0
jAjHj ¼

ajj : cjþ1

. . . . . . . . . :

x : Ajþ1

:

26664
37775)

n� j
ð5:3Þ

Step 4: Update matrix

H ¼ H

Ij�1 : 0
. . . . . . . . .
0 : Hj

:

2664
3775

where Ij�1 is an identity matrix with dimension j � 1.

Solution of Matrix Equation TA� FT ¼ LC
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Step 5: If cjþ1 of (5.3) equals 0, then go to Step 7.
Step 6: Let j ¼ j þ 1 (so that cjþ1 and Ajþ1 of (5.3) become cj and Aj,

respectively). If j ¼ n then go to Step 7; otherwise return to
Step 2.

Step 7: The final result is

CH

. . . ::

H 0AH

264
375 ¼

c1 0 . . . : . . . 0 : 0 . . . :0

. . . : . . . : . . . : . . . : . . . : : :

a11 c2 0 . . . : 0 : :

: a22
. .
. . .

.
: : :

: . .
. . .

.
0 : :

: . .
.

cj : :

x ajj : 0 . . . :0

. . . : . . . : . . . : . . . : . . . : : . . . . . . :

X :Ao

26666666666666666664

37777777777777777775

4
¼

Co : 0

. . . :

Ao : 0

. . . . . . . . .

X : Ao

26666664

37777775gj
gn� j

ð5:4Þ

where the matrix pair ðAo; CoÞ is in the observable
Hessenberg form of (5.2) and is separated from the
unobservable part of the system Ao. The dimension of this
observable part is j but will be replaced by n elsewhere in this
book because only observable systems are being considered.
(see Exercise 5.4).

5.1.2 Multiple Output Systems

In multi-output systems of m outputs, C is a matrix of m rows and is no
longer a row vector. The corresponding observable Hessenberg form in this
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case is the so-called block-observable Hessenberg form, as in:

CH
. . . ::
H 0AH

24 35 ¼

C1 0 . . . : . . . : . . . : 0

. . . : . . . : . . . : . . . : . . . : . . . :

A11 C2 0 . . . : . . . : 0

: A22 C3
. .
.

:

: . .
. . .

. . .
. . .

.
:

: . .
. . .

. . .
.

0

: . .
. . .

.
Cn

An1 . . . Ann

2666666666666666664

3777777777777777775
m1 m2 . . . . . . . . . . . . . . . : mn

ð5:5Þ

where the Aij is an mi6mj dimensional arbitrary matrix block, and Cj ð j ¼
1; . . . ; nÞ is an mj�16mj dimensional ‘‘lower-echelon matrix’’
ðm0 ¼ m5m15m25 � � �5mn > 0Þ. We will use the following example to
illustrate the lower-echelon-form matrix.

Example 5.1

All lower-echelon-form matrices with three rows are in the following seven
different forms:

* 0 0
x * 0
x x *

24 35; * 0
x *

x x

24 35; * 0
x 0
x *

24 35; 0 0
* 0
x *

24 35; *

x
x

24 35; 0
*

x

24 35; 0
0
*

24 35
where ‘‘x’’ entries are arbitrary and ‘‘*’’ entries are nonzero.

From Sec. A.2 of Appendix A, there exists a unitary matrix Hj such
that CjHj ¼ ½Cj; 0 . . . 0 � for any matrix Cj with mj�1 rows, where Cj is
an mj�16mj dimensional lower-echelon matrix.

From Example 5.1, all mj columns of Cj are linearly independent of
each other, and so are the mj rows (those with a ‘‘*’’ element) of Cj. Each of
the other mj�1 �mj rows (those without a ‘‘*’’ element) can always be
expressed as a linear combination of the linearly independent rows which
are above this linearly dependent row in Cj (see Sec. A.2 of Appendix A).

gm0

gm1

gmv

gm2

:

:

gmv�1
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Example 5.2

In the last six of the seven matrices of Example 5.1, the linearly dependent
rows are, respectively, the 3rd, the 2nd, the 1st, the 3rd and 2nd, the 3rd and
1st, and the 2nd and 1st of the corresponding matrix. All three rows of the
first matrix are linearly independent of each other.

For each of the last six of the seven matrices Cj ð j ¼ 2; . . . ; 7Þ of
Example 5.1, there exists at least one row vector dj such that djCj ¼ 0.
For example, dj ¼ ½ x x 1 �; ½ x 1 0 �; ½ 1 0 0 �; ½ x 0 1 � or
½ x 1 0 �; ½ 0 x 1 � or ½ 1 0 0 �, and ½ 0 1 0 � or ½ 1 0 0 �, for
j ¼ 2; . . . ; 7, respectively. It is clear that in these dj vectors, the position of
element ‘‘1’’ always corresponds to the linearly dependent row of the
corresponding Cj, while all ‘‘x’’ elements are the linear combination
coefficients for that linearly dependent row. It is also clear that these
coefficients correspond only to the linearly independent rows which are
above that linearly dependent row.

Without loss of generality, we assume m1 ¼ m, so that all m system
outputs are linearly independent [Chen, 1984]. In other words, each row of
matrix C corresponds to a linearly independent output. As in the single-
output case, during the computation of the block-observable Hessenberg
form, if a row of Cj becomes 0 or becomes linearly dependent on its previous
rows of Cj, then the corresponding output is no longer influenced by more
system states. Thus this row/column will disappear at the subsequent
Ciði > jÞ blocks (or no longer appear at the observable part of the system).
With this adaptation, Algorithm 5.1 can be generalized to the following
Algorithm 5.2 for multi-output case.

Algorithm 5.2 Computation of Block-Observable
Hessenberg Form

Step 1: Let j ¼ 1;H ¼ I ;C1 ¼ C;A1 ¼ A;m0 ¼ m, and n0 ¼ 0.
Step 2: Compute a unitary matrix Hj such that CjHj ¼ ½Cj; 0 . . . 0�,

where Cj is an mj�16mj dimensional lower echelon matrix.
Step 3: Compute

H 0
jAjHj ¼

Ajj : Cjþ1

. . . . . . . . . :

X : Ajþ1

:

26664
37775

gmj

mj

ð5:6Þ

Copyright  2004 by Marcel Dekker, Inc. All Rights Reserved.



www.manaraa.com

Step 4: Update matrix

H ¼ H

Ij : 0

. . . . . . . . .

0 : Hj

:

26664
37775

where I j is an identity matrix with dimension nj�1.
Step 5: nj ¼ nj�1 þmj. If nj ¼ n or if Cjþ1 ¼ 0, then let n ¼ j and go

to Step 7.
Step 6: Let j ¼ j þ 1 (so that the Cjþ1 and Ajþ1 of (5.6) become Cj

and Aj, respectively), and return to Step 2.
Step 7: The final result is

CH

. . . ::

H 0AH

264
375 ¼

C1 0 . . . . . . 0 : 0 . . . 0

. . . : . . . : . . . : . . . : . . . : :

A11 C2
. .
.

: :

: A22
. .
. . .

.
: :

: . .
. . .

. . .
.

0 :

: . .
. . .

.
Cn :

An1
. .
.

Ann : 0 . . . 0

. . . : . . . : . . . : . . . : . . . : . . . . . . : :

X : Ao

2666666666666666666664

3777777777777777777775

gm

¼

Co : 0

. . . :

Ao : 0

. . . : . . . . . .

X : Ao

26666664

37777775 ð5:7Þ

where the matrix pair ðAo; CoÞ is already in the block-
observable Hessenberg form (5.5) and is already separated
from the unobservable part Ao of the system. The dimension
of Ao is nj ¼ m1 þ � � � þmv (replaced by n in the rest of this
book).
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It is clear that Algorithm 5.2 is a generalized version of Algorithm 5.1, when
the parameter m is generalized from 1 to m ð51Þ. The main computation of
this algorithm is at Step 3. According to Sec. A.2 of Appendix A, the order
of computation of this algorithm (based on Step 3) is about 4n3=3.

Definition 5.1

From the description of the block-observable Hessenberg form (5.5), each
row of matrix C of (5.5) corresponds to one of system outputs and is linked
to one more system state if that row is linearly independent in the next
matrix block Cjþ1 of (5.5). Therefore the number of system states which
influence the i-th system output equals the number of matrix blocks Cj in
which the i-th row of C is linearly independent. We define this number as the
i-th observability index ni; i ¼ 1; . . . ;m.

It is clear that ni ¼ j if that i-th row becomes linearly dependent
in matrix block Cjþ1, and that n1 þ � � � þ nm ¼ n. It is also clear that
maxfnig ¼ n of Step 5, and that all observability indices can be
determined by Algorithm 5.2.

Another set of parameters mj; j ¼ 1; . . . ; n of (5.5) can also be used to
indicate the observability index. From the description of (5.5) and
Definition 5.1, mj indicates the number of observability indices which are
5j.

Example 5.3

Let the block-observable Hessenberg form of a four-output and ninth-order
system be

C
A

� �
¼

C1 0 0 0

A11 C2 0 0
A21 A22 C3 0
A31 A32 A33 C4

A41 A42 A43 A44

26666664

37777775
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¼

* 0 0 0 : 0 0 0 0 0

x þ 0 0 : 0 0 0 0 0

x x & 0 : 0 0 0 0 0

x x x # : 0 0 0 0 0

x x x x : * 0 0 : 0 0

x x x x : x þ 0 : 0 0

x x x x : x x 0 : 0 0

x x x x : x x # : 0 0

. . . . . . . . . . . . . . . : . . . : . . . . . . : ::

x x x x : x x x : 0 : 0

x x x x : x x x : þ : 0

x x x x : x x x : x : 0

. . . . . . . . . . . . . . . : . . . : . . . . . . : ::

x x x x : x x x : x : þ
. . . . . . . . . . . . . . . : . . . : . . . . . . : ::

x x x x : x x x : x : x

26666666666666666666666666666666666666664

37777777777777777777777777777777777777775

ð5:8aÞ

From Definition 5.1, corresponding to the four system outputs which
are represented by the nonzero elements with symbols ‘‘*,’’ ‘‘þ,’’ ‘‘&,’’ and
‘‘#,’’ respectively, the observability indices are n1 ¼ 2; n2 ¼ 4; n3 ¼ 1, and
n4 ¼ 2. These indices also equal the number of appearances of the
corresponding symbols in (5.8a). We can verify that
n1 þ n2 þ n3 þ n4 ¼ m1 þm2 þm3 þm4 ¼ n ¼ 9, and that n ¼ n2 ¼ 4. We
can also verify that mj equals the number of observability indices which are
greater than or equal to j ð j ¼ 1; . . . ; n ¼ 4Þ.

In the literature Chen [1984], the block-observable Hessenberg form
(5.8a) can be further transformed to the block-observable canonical form
(1.16) by elementary similarity transformation:

CE

E�1AE

� �
¼

I1 0 0 0

A1 I2 0 0

A2 0 I3 0

A3 0 0 I4

A4 0 0 0

2666666664

3777777775

)
m0 ¼ m ¼ 4

)
m1 ¼ 4

)
m2 ¼ 3

gm3 ¼ 1

gm4 ¼ 1

Solution of Matrix Equation TA� FT ¼ LC
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¼

1 0 0 0 : 0 0 0 0 0

x 1 0 0 : 0 0 0 0 0

x x 1 0 : 0 0 0 0 0

x x x 1 : 0 0 0 0 0

x x x x : 1 0 0 : 0 0

x x x x : 0 1 0 : 0 0

x x x x : 0 0 0 : 0 0

x x x x : 0 0 1 : 0 0

. . . . . . . . . . . . . . . : . . . : . . . . . . : ::

x x x x : 0 0 0 : 0 : 0

x x x x : 0 0 0 : 1 : 0

x x x x : 0 0 0 : 0 : 0

. . . . . . . . . . . . . . . : . . . : . . . . . . : ::

x x x x : 0 0 0 : 0 : 1

. . . . . . . . . . . . . . . : . . . : . . . . . . : ::

x x x x : 0 0 0 : 0 : 0

26666666666666666666666666666666666666664

37777777777777777777777777777777777777775

ð5:8bÞ

where matrix E represents elementary matrix operations [Chen, 1984] and is
usually not a unitary matrix.

The comparison of (5.8a) and (5.8b) shows that the block-observable
canonical form is a special case of the block-observable Hessenberg form, in
the sense that in (5.8b), all nonzero elements (those symbols) of Cj blocks of
(5.8a) become 1, and all other arbitrary ‘‘x’’ elements of (5.8a) except those
in the left m1 columns become 0.

Although the parameters of a block-observable canonical form system
matrix can be substituted directly into the polynomial matrix fraction
description of its corresponding transfer function GðsÞ ¼ D�1ðsÞNðsÞ (see
Example 1.7), this unique advantage is offset by the unreliability of its
computation (matrix E of (5.8b) is usually ill conditioned [Wilkinson,
1965]). For this reason, the actual design algorithms of this book are based
only on the observable Hessenberg form.
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5.2 SOLVING MATRIX EQUATION TA� FT ¼ LC

The computational algorithm for the solution of matrix equation (4.1)
ðTA� FT ¼ LCÞ is presented in this section. Here the n6n and m6n
dimensional system matrices ðA; CÞ are given and are observable. The
number of rows of solution ðF ; T ; LÞ is presumed to be n�m, although this
number is freely adjustable because each row of this solution will be
completely decoupled.

To simplify the computation of solution of (4.1), we have computed
block-observable Hessenberg form ðH 0AH; CHÞ in Algorithm 5.2. Sub-
stituting ðH 0AH; CHÞ into (4.1), we have TðH 0AHÞ � FT ¼ LðCHÞ, which
implies that the solution matrix T of this equation must be postmultiplied by
H 0, in order to be recovered to the solution ðTH 0Þ, which corresponds to the
original ðA;CÞ.

Mathematically, the eigenvalues ðli; i ¼ 1; . . . ; n�mÞ of matrix F of
(4.1) can be arbitrarily given. We will, however, select these eigenvalues
based on the following analytical understandings.

First, these eigenvalues must have negative and sufficiently negative
real parts in order to achieve observer stability and sufficiently fast
convergence of observer output to KxðtÞ (Theorem 3.2).

Second, the magnitude of these eigenvalues cannot be too large
because it would cause large observer gain L (see Secs. 3.1 and 4.3).

Third, each plant system stable transmission zero must be matched by
one of the eigenvalues of F. This is the necessary condition for the
corresponding rows of T to be linearly independent if TB=0 (see Sec. 6.2).

Finally, all n�m eigenvalues of F are the transmission zeros of the
corresponding observer feedback system [Patel, 1978] and should be selected
with the properties of transmission zeros in mind (see Sec. 1.4).

There have been some other suggestions for the selection of
eigenvalues of F, but they are unsatisfactory. For example, the suggestion
that the eigenvalues of F other than those which matched the stable
transmission zeros be negative infinity with Butterworth pattern, is criticized
by Sogaard-Andersen [1987]. The other suggestion that all eigenvalues of F
be clustered around the plant system stable transmission zeros causes near
singular matrix C ¼ ½T 0 : C0�0, and therefore large and unsatisfactory
observer output gain K in (4.2) [Tsui, 1988b]. Hence the eigenvalues of F
should be selected by following the preceding four guidelines.

Once the eigenvalues of matrix F are selected, the matrix F is required
in our algorithm to be a Jordan form matrix, with all multiple eigenvalues
forming a single Jordan block [see (1.10)]. Hence the matrix F is fully
determined. In addition, each row or each block of rows of solution
ðF ; T ; LÞ corresponding to a Jordan block of F is decoupled and can be
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separately computed. Therefore, our algorithm treats the following two
cases of Jordan block size (¼ 1 or > 1), separately.

5.2.1 Eigenstructure Case A

For distinct and real eigenvalue li ði ¼ 1; . . . ; n�mÞ of F, (4.1) can be
partitioned as

tiA� liti ¼ 1iC; i ¼ 1; . . . ; n�m ð5:9Þ

where ti and li are the i-th row of matrix T and L corresponding to li,
respectively.

Based on the observable Hessenberg form (5.5) where

C ¼½C1 0 . . . 0 �
m

Eq. (5.9) can be partitioned as the left m columns

tiðA� liIÞ
Im
0

� �
¼ 1iC

Im
0

� �
¼ 1iC1 ð5:10aÞ

and the right n�m columns

tiðA� liIÞ
0

In�m

� �
¼ 1iC

0
In�m

� �
¼ 0 ð5:10bÞ

Because C1 of (5.5) is of full-column rank and 1i is free, (5.10a) can always
be satisfied by 1i for whatever ti. Therefore, the problem of (5.9) is simplified
to the solving of ti of (5.10b) only, which has only n�m columns instead of
the n columns of (5.9).

From observability criteria and the form of matrix C, the matrix
product on the left-hand side of (5.10b) must have m linearly dependent
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rows. Furthermore, this matrix

ðA� liIÞ
0

In�m

� �
¼

C2 0 . . . : . . . : 0

A22 � liI C3
. .
.

:

: . .
. . .

.
:

: . .
.

0
: Cv

An2 . . . Ann �liI

2666666664

3777777775
ð5:11Þ

maintains the same form of that of the right n�m columns of matrix A, if A
is in block-observable Hessenberg form (5.5). From the definition of this
form, the Cj matrices ð j ¼ 2; . . . ; vÞ and the matrix of (5.11) are in lower
echelon form. In other words, the n�m linearly independent rows of matrix
(5.11) are clearly indicated as the rows corresponding to the nonzero
elements of matrices Cj ð j ¼ 2; . . . ; vÞ. Each of the rest of m rows of matrix
(5.11) can always be expressed as a linear combination of its previous and
linearly independent rows in that matrix. Thus we have the following
conclusion.

Conclusion 5.1

The solution ti of Eq. (5.10b) has m basis vectors dij ð j ¼ 1; . . . ;mÞ. If
ðA; CÞ is already in block-observable Hessenberg form, then each of these m
basis vectors can correspond to one of the m linearly dependent rows of
matrix (5.11), each can be formed by the linear combination coefficients of
the preceding and linearly independent rows of this linearly dependent row,
and each can be computed by back substitution.

Example 5.4 For a Single-Output Case ðm ¼ 1Þ

From (5.2),

ðA� liIÞ
0

In�1

� �
¼

* 0 . . . : . . . : 0

x * . .
.

:

: . .
. . .

.
:

: . .
.

0
: *

x . . . . . . : . . . : x

2666666664

3777777775
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which has only one ðm ¼ 1Þ linearly dependent row (the row without a ‘‘*’’
element). The solution ti therefore has only one basis vector and is unique,
and can be computed by back substitution.

Example 5.5 For a Multi-Output Case

In Example 5.3 ðm ¼ 4Þ, for each li, the corresponding solution ti of (5.10b)
has m ð¼ 4Þ basis vectors as

di1 ¼ ½ x x 0 x : 1 0 0 : 0 : 0 �
di2 ¼ ½ x x 0 x : 0 x 0 : x : 1 �
di3 ¼ ½ x x 1 0 : 0 0 0 : 0 : 0 �
di4 ¼ ½ x x 0 x : 0 x 1 : 0 : 0 �

Each of the above vectors dij has a ‘‘1’’ element, whose position corresponds
to where the j-th row becomes linearly dependent in (5.8a)
ð j ¼ 1; . . . ;m ¼ 4Þ. The ‘‘x’’ elements of dij are the linear combination
coefficients of the linearly independent and preceding rows on that j-th
linearly dependent row. Because each dij vector satisfies (5.10b), the actual
solution ti of (5.10b) can be an arbitrary linear combination of the dij’s.

At the same position of each ‘‘1’’ element of dij , the elements of other
three basis vectors are all 0. Therefore the four basis vectors are linearly
independent of each other.

From Conclusion 5.1, for multiple ð4mÞ and real eigenvalues
ðsay; li; i ¼ 1; . . . ;mÞ, it is possible to assign their corresponding rows of T
as ti ¼ dii ði ¼ 1; . . . ;mÞ. This way, these multiple eigenvalues become
equivalent of the distinct eigenvalues in the sense that their corresponding
Jordan block in F becomes diagfli; i ¼ 1; . . . ;mg. However, by making this
assignment, there is certainly no more freedom left for solutions
ti ði ¼ 1; . . . ;mÞ, and hence this possible solution is not recommended for
solving (4.1) and (4.3) [but is recommended for solving the dual of (4.1) in
eigenstructure assignment problems of Chap. 8].

Replacing the block-observable Hessenberg form (5.8a) by its special
case, the block-observable canonical form (5.8b), the four basis vectors of ti
of (5.10b) are

di1 ¼ ½ li 0 0 0 : 1 0 0 : 0 : 0 �
di2 ¼ ½ 0 l3i 0 0 : 0 l2i 0 : li : 1 �
di3 ¼ ½ 0 0 1 0 : 0 0 0 : 0 : 0 �
di4 ¼ ½ 0 0 0 li : 0 0 1 : 0 : 0 �
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These four vectors not only are linearly independent of each other, but also
have additional algebraic properties as follows.

Conclusion 5.2

From the above example, for a fixed parameter j ð j ¼ 1; . . . ;mÞ, any set of
vj of the n dij vectors are linearly independent, because these vectors form a
matrix which equals a vj dimensional Vandermonde matrix added with n�
vj zero columns. This conclusion is valid for block-observable Hessenberg
form-based vectors too, because (5.8a) and (5.8b) are similar to each other.
This conclusion can also be extended to multiple eigenvalue and generalized
eigenvector cases. See the more rigorous proof in Theorem 8.1.

It is also obvious from the above example that for a fixed parameter
j ð j ¼ 1; . . . ;mÞ, any vj � 1 of the n dij vectors are also linearly independent
of matrix C of (5.5).

5.2.2 Eigenstructure Case B

For complex conjugate or multiple eigenvalues of F, the results of Case A
can be generalized.

Letting li and liþ1 be a+jb, and their corresponding Jordan block be

Fi ¼
a b
�b a

� �
as in (1.10), the corresponding Eqs of (5.9), (5.10a), and (5.10b) become

ti

tiþ1

� �
A� Fi

ti

tiþ1

� �
¼

1i

1iþ1

� �
C ð5:12Þ

ti

tiþ1

� �
A

Im

0

� �
� Fi

ti

tiþ1

� �
Im

0

� �
¼

1i

1iþ1

� �
C1 ð5:13aÞ

and

ti
tiþ1

� �
A

0
In�m

� �
� Fi

ti
tiþ1

� �
0

In�m

� �
¼ 0 ð5:13bÞ

respectively.
Because in (5.13a) C1 is of full-column rank and 1i and 1iþ1 are

completely free, we need only to solve (5.13b) for ti and tiþ1. (5.13b) can be
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written as a set of linear equations:

½ti : tiþ1�
A

0

In�m

� �
:

:
0

. . . . . . . . . . . . . . . . . . :

0
:

:
A

0

In�m

� �
266664

377775
0BBBB@

�
a

0

In�m

� �
:

:
�b

0

In�m

� �
. . . . . . . . . . . . . . . . . . . . .

b
0

In�m

� �
:

:
a

0

In�m

� �
266664

377775
1CCCCA ¼ 0

ð5:13cÞ

where the two matrices in the bracket have dimension 2n62ðn�mÞ, and
can be expressed as

1 0
0 1

� �
6A

0
In�m

� �
and F 0

i6
0

In�m

� �

respectively, where the operator ‘‘6’’ stands for ‘‘Kronecker product.’’
It is not difficult to verify that like the matrix (5.10b) of Case A, the

whole matrix in the bracket of (5.13c) has 2m linearly dependent rows.
Therefore the solution ½ti : tiþ1� of (5.13c) has 2m basis vectors
½dij : diþ1;j�ð j ¼ 1; . . . ; 2mÞ.

Example 5.6 Single-Output Case ðm ¼ 1Þ

Let matrix A of (5.2) be

x * 0
x x *

x x x

24 35 ðn ¼ 3Þ
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then the matrix of (5.13c) will be

* 0 : 0 0
x * : b 0
x x : 0 b
. . . . . . . . . . . . . . . :
0 0 : * 0
�b 0 : x *

0 �b : x x

2666666664

3777777775
Clearly, this matrix has 2m ð¼ 2Þ linearly dependent rows which do not have
‘‘*’’ elements. Therefore the solution ½ti : tiþ1� has 2m ð¼ 2Þ basis vectors of
the following forms:

½ di1 : diþ1;1 � ¼ ½ x x 1 : x x 0 �

and

½ di2 : diþ1;2 � ¼ ½ x x 0 : x x 1 �

where the position of element ‘‘1’’ corresponds to one of the two linearly
dependent rows, and ‘‘x’’ elements are the linear combination coefficients of
all linearly independent rows. These two basis vectors can be computed
separately, either by modified back substitution method or by Givens’
rotational method [Tsui, 1986a].

For a multiple of q eigenvalues li and their corresponding
q-dimensional Jordan block

F 0
i ¼

li 1 0 . . . : . . . : 0

0 li 1 . .
.

:

: 0 . .
. . .

. . .
.

:

: . .
. . .

. . .
.

0

: . .
.

li 1
0 . . . . . . . . . : 0 li

26666666664

37777777775
where ‘‘0’’ stands for transpose, its corresponding (5.12) and (5.13a,b,c) are,
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respectively:

t1

:

tq

264
375A� Fi

t1

:

tq

264
375 ¼

11

:

1q

264
375C ð5:14Þ

t1

:

tq

264
375A Im

0

� �
� Fi

ti

:

tq

264
375 Im

0

� �
¼

11

:

1q

264
375C1 ð5:15aÞ

t1

:

tq

264
375A 0

In�m

� �
� Fi

t1

:

tq

264
375 0

In�m

� �
¼ 0 ð5:15bÞ

and

½ t1 : . . . : tq � Iq6A
0

In�m

� ��
�F 0

i6
0

In�m

� ��
¼ 0 ð5:15cÞ

where ti ði ¼ 1; . . . ; qÞ are the q rows of solution matrix T corresponding to
the Jordan block Fi.

Because C1 is of full-column rank and 1i ði ¼ 1; . . . ; qÞ are free in
(5.15a), we need to solve (5.15b,c) only for ti ði ¼ 1; . . . ; qÞ.

It is not difficult to verify that like (5.13c), the whole matrix in the
bracket of (5.15c) has qm linearly dependent rows. Thus the solution
½ t1 : . . . : tq � of (5.15c) has qm basis vectors
½ d1j : . . . : dqj �; j ¼ 1; . . . ; qm.

Because of the simplicity of bidiagonal form of the Jordan block Fi,
(5.15b,c) can be expressed as

tjðA� liIÞ
0

In�m

� �
¼ tj�1

0
In�m

� �
; j ¼ 1; . . . ; q; t0 ¼ 0 ð5:15dÞ

Equation (5.15d) shows that all tj vectors except t1 are computed based on
its previous vector tj�1. These vectors are called ‘‘generalized’’ or
‘‘defective.’’ Because the vectors tj are also the left eigenvectors [see
(1.10)], we also call tj ð j ¼ 2; . . . ; qÞ of (5.15d) ‘‘generalized/defective
eigenvectors’’ [Golub and Wilkinson, 1976b].

The above cases of A and B can be summarized in the following
algorithm for solving (4.1) [Tsui, 1987a].
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Algorithm 5.3 Computation of Solution of Matrix Equation
TA� FT ¼ LC

Step 1: Based on each eigenvalue of F (say, li, which is distinct real,
complex conjugate, or multiple [of q]), compute the m, 2m,
and qm basis vectors of the corresponding ti; ½ti : tiþ1�, and
½ ti : . . . : tiþq�1 �, according to (5.10b), (5.13c), and
(5.15c), respectively.

Step 2: The row (or rows) ti; ½ti : tiþ1�, and ½ ti : . . . : tiþq�1 �
equal an arbitrary linear combination of their corresponding
set of m, 2m, and qm basis vectors, respectively ði ¼ 1; . . . ; nÞ.
There are a total of nm free linear combination coefficients.

Step 3: After all ti rows and the corresponding matrix T are fully
determined in Step 2, satisfy the left m columns of TA�
FT ¼ LC [or (5.10a), (5.13a), and (5.15a)] by solving

ðTA� FTÞ Im
0

� �
¼ LC1 ð5:16Þ

The solution L is unique because C1 has m linearly
independent columns.

Conclusion 5.3

The above Algorithm 5.3 computes ðF ; T ; LÞ which satisfies (4.1). It is clear
that the first two steps of the algorithm satisfy the right n�m columns of
(4.1), and Step 3 satisfies the left m columns of (4.1). This solution does not
assume any restrictions and is therefore completely general. The complete
remaining freedom of (4.1) is also expressed explicitly (as the linear
combination coefficients) in Step 2.

Let us analyze the computational reliability and efficiency of this
algorithm.

Because the initial step of an algorithm affects the computation
reliability of that algorithm most, and because most of the computation of
Algorithm 5.3 concerns Step 1, the analysis will concentrate on this step
only.

This step can be carried out by back substitution (see Sec. A.2 of
Appendix A), which is itself numerically stable [Wilkinson, 1965]. However,
this operation requires repeated divisions by those ‘‘*’’ nonzero elements of

Copyright  2004 by Marcel Dekker, Inc. All Rights Reserved.



www.manaraa.com

the Hessenberg form matrix (5.5). Therefore this step can be ill conditioned
if these nonzero elements are not large enough in magnitude.

According to the Householder method (see Sec. A.2 of Appendix A),
these nonzero elements (computed at Step 2 of Algorithm 5.2) equal the
norm of the corresponding row vector. This step also consists of the
determination of whether that norm is zero or nonzero. Therefore, to
improve the condition of Step 1 of Algorithm 5.3, it is plausible to admit
only the large enough vector norms as nonzero. From the description of
Example 1.5, each of these nonzero elements is the only link between one of
the plant system states to system output. Thus admitting only the large
enough elements as nonzero implies admitting only the strongly observable
states as observable states.

However, reducing the dimension of a system’s observable part also
implies the reduction of system information. This tradeoff of accuracy and
solution magnitude is studied in depth in Lawson and Hanson [1974], Golub
et al. [1976a]. To best handle this tradeoff, the singular value decomposition
(SVD) method can be used to replace the Householder method in Step 2 of
Algorithm 5.2 [Van Dooren, 1981; Patel, 1981]. However, the SVD method
cannot determine at that step which row among the mj�1 rows of matrix Cj

is linearly dependent or independent, and thus cannot determine the
observability index, which is the analytic information about multi-output
system and is as important as the system order of single-output systems. In
addition, the SVD method cannot result in echelon form matrix Cj—the
form which made the simple back substitution operation of Step 1 of
Algorithm 5.3 possible.

The distinct advantage of the computational efficiency of Step 1 of
Algorithm 5.3 is that this computation can be carried out in complete
parallel. This advantage is uniquely enabled by the distinct feature that all
basis vectors dij are completely decoupled for all j ð j ¼ 1; . . . ;mÞ and for all
i ði ¼ 1; . . . ; nÞ as long as the li’s are in different Jordan blocks of F. In other
words, the computation of dij does not depend on the information of other
dij ’s. Only the dij ’s corresponding to the same Jordan block and the same j
are coupled [see (5.13c) and (5.15c)]. In addition, the back substitution
operation is itself very simple and efficient (see Sec. A.2 of Appendix A).

The basic reason for the good computational properties of Algorithm
5.3 is the Jordan form of matrix F. It should be noticed that simplicity and
decoupling are the fundamental features and advantages of eigenstructure
decomposition. This is the reason that the eigenstructure decomposition (or
Jordan form) is computed from a given matrix in the first place. In the
particular problem of solving (4.1), the eigenvalues are given and are
unnecessary to be computed. Therefore it is certainly plausible to set matrix
F in Jordan form—the form that is much sought after in other problems.
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Conclusion 5.4

The computation of Algorithm 5.3 is very reliable and very efficient, as
compared with other algorithms for solving (4.1).

The much more important advantage of the solution of Algorithm 5.3
concerns its analytical aspects.

Equation (4.1) is not only the most fundamental equation of observer
feedback compensator (3.16) design (see Chaps 3 and 4), but also the most
fundamental equation of state/generalized state feedback design. The dual
of (4.1) is

AV � VL ¼ B �KK ; ð5:17Þ

which implies A� BK ¼ VLV�1, where K ¼ �KKV�1 is the state feedback
control gain, and V and L are the right eigenvector matrix and the Jordan
form matrix of the state feedback system dynamic matrix A� BK ,
respectively.

Because of these reasons, if Lyapunov/Sylvester equations

AV � VA0 ¼ B = AV � VL ¼ B ð5:18Þ

are considered fundamental in system analysis, and if the algebraic Riccati
equation is considered fundamental in quadratic optimal control system
design, then Eqs (4.1) and (5.17) should be considered the most fundamental
equations in state space control system design.

However, the really general solution of (4.1), with really fully usable
remaining freedom and with fully decoupled properties, was not derived
until 1985 [Tsui, 1987a, 1993a]. For example, the solution of the Sylvester
equation (5.18) has generally been used as the substitute of the general
solution of (5.17) [Tsui, 1986c]. Because (5.18) lacks the free parameter �KK at
its right-hand side as compared with (5.17) [or lacks parameter L of (4.1)], it
cannot be simplified to the form of (5.10b), (5.13c), or (5.15c). Thus the
existence of solution of (5.18) is questionable when A and L share common
eigenvalues [Gantmacher, 1959; Chen, 1984; Friedland, 1986]. Such a
solution is certainly not a general solution of (4.1) or (5.17).

From Conclusion 5.3, the general solution of (4.1) or (5.17) has been
derived, with explicitly and fully expressed remaining freedom and with
completely decoupled rows corresponding to the different Jordan blocks of
F. Such a solution to such a fundamental equation of design will certainly
have great impact on state space control system design and on the practical
value of state space control theory. In fact, as will be shown in the rest of
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this book, this solution has uniquely enabled the dynamic output feedback
compensator design [Tsui, 1992, 1993b] (Sec. 6.1), the systematic minimal
order observer design [Tsui, 1985] (Chap. 7), the systematic eigenvalue
assignment [Tsui, 1999a] (Sec. 8.1) and eigenvector assignment [Kautsky
et al., 1985; Tsui, 1986a] (Sec. 8.2), and the robust failure detector design
[Tsui, 1989] (Sec. 10.1).

Figure 5.1 outlines the sequential relationship of these design results.

EXERCISES

5.1 Repeat the computation of similarity transformation to block-
observable Hessenberg form of Example 6.2, according to Algorithm
5.2 (also Algorithm A.1 for QR decomposition).

5.2 Repeat 5.1 for Example 8.7 (dual version).
5.3 Repeat the computation of satisfying (4.1) for Examples 6.1, 6.2, 6.3,

7.3 and 8.1, 8.2, 8.3, 8.4 (Step 1), according to Algorithm 5.3 (first two
steps mainly). Verify (4.1) for these results.

5.4 Partitioning the state of system (5.7) as ½xoðtÞ0 : xoðtÞ0�0, the system’s
block diagram can be depicted as in Fig. 5.2 which shows that

Figure 5.1 Sequence of design algorithms of this book.
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ðAo; Bo; CoÞ is observable, while the other part of the system
ðAo; Bo; 0Þ is not. Repeat this proof for its dual case (controllable
Hessenberg form).

5.5 Compute the solution ðT4¼ ½t1 t2�;LÞ which satisfies the matrix
equation (4.1) ðTA� FT ¼ LCÞ, where [Chen, 1993]

A ¼
0 1

0 �1

� �
C ¼ 1 0½ �

and

F ¼ �4 and� 1; respectively

Answer : For F ¼ �4 : T ½ 1 3 �0 ¼ 0 ) T ¼ ½�3t2 t2 �ðarbitrary
t2 6¼ 0Þ; then;L ¼ T ½ 4 0 �0 ¼ �12t2:

For F ¼ �1 : T ½ 1 0 �0 ¼ 0 ) T ¼ ½ 0 t2 �ðarbitrary
t2 6¼ 0Þ; then;L ¼ T ½ 1 0 �0 ¼ 0:

Figure 5.2 Block diagram of systems with observable and unobservable
parts.
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6

Observer (Dynamic Part) Design for
Robustness Realization

Step 2 of Algorithm 5.3 revealed the remaining freedom of (4.1). This
freedom will be fully used for the various design applications listed at the
end of Chap. 5.

This chapter describes the first of such applications—observer design
for the guaranteed full realization of the robustness properties of state
feedback control. Failure to realize the robustness properties of this control
is perhaps the drawback that has limited the practical applications of state
space control theory. This chapter will demonstrate for the first time, that
with the full use of the remaining freedom of (4.1), this drawback can be
effectively overcome for most open loop system conditions.
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The design of this chapter will fully determine the dynamic part of the
observer, which can also be considered as a feedback compensator.

This chapter consists of four sections.
Section 6.1 presents the design algorithm that uses the remaining

freedom of (4.1) to best satisfy equation TB ¼ 0 (4.3). As described in Chap.
3, TB ¼ 0 is the key requirement of realizing the robustness properties of
state feedback control [Tsui, 2000].

Section 6.2 analyzes the generality of the above solution of (4.1) and
(4.3), and illustrates this design algorithm with six numerical examples.

Section 6.3 demonstrates a theoretical significance of this design
algorithm—the complete unification of exact LTR state observer feedback
system and the static output feedback system.

Section 6.4 describes the adjustment of observer order, which is
completely adjustable under the design algorithm of this book. The higher
observer order implies a less constrained and therefore a more powerful
generalized state feedback control, while the lower observer order implies an
easier realization of robustness properties of this control.

6.1 SOLUTION OF MATRIX EQUATION TB ¼ 0

Let us first summarize the results at Step 2 of Algorithm 5.3. For distinct
and real eigenvalue li,

ti ¼ ciDi ð6:1aÞ

For complex conjugate li and liþ1,

½ti : tiþ1� ¼ ½ci : ciþ1�½Di : Diþ1� ð6:1bÞ

For multiple of q eigenvalues lj ð j ¼ i; . . . ; i þ q� 1Þ,

½ti : . . . : tiþq�1� ¼ ½ci : . . . : ciþq�1�½Di : . . . : Diþq�1� ð6:1cÞ

The dimensions of each row vector ti and ci ði ¼ 1; . . . ; n�mÞ are n and m,
respectively.
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Algorithm 6.1 Solve TB ¼ 0 ð4:3Þ½Tsui; 1992; 1993b�

Step 1: Substitute (6.1) into (4.3), we have

ci½DiB� ¼ 0 ð6:2aÞ
½ci : ciþ1�½DiB : Diþ1B� ¼ 0 ð6:2bÞ

and

½ci : . . . : ciþq�1�½DiB : . . . : Diþq�1B� ¼ 0 ð6:2cÞ

respectively.
Step 2: Compute the solution ci ði ¼ 1; . . . ; n�mÞ of (6.2).

Equation (6.2) is only a set of linear equations (see Appendix A).
Nonetheless, there are two special cases of (6.2) which will be treated
separately in the following. To simplify the description, only the distinct and
real eigenvalue case (6.2a) will be described.

Case A

If the exact nonzero solution of (6.2a) does not exist (this usually happens
when m < pþ 1), then compute the least square solution of (6.2a):

ci ¼ u0m ð6:3Þ

where um is the m-th column of matrix U, and where USV 0 ¼ DiB is
the singular value decomposition of DiB (with nonzero singular values
si > 0; i ¼ 1; . . . ;m) of (A.21). The corresponding right-hand side of
(6.2a) will be smvm, where vm is the m-th row of matrix V 0 of (A.21) (see
Example A.6).

Because the solution of case A implies that TB=0, the corresponding
observer (3.16) cannot be considered as a dynamic output feedback
compensator (4.10), even though this observer approximates the dynamic
output feedback compensator requirement ðTB ¼ 0Þ in least-square sense.

Case B

If the exact solution of (6.2a) is not unique (this usually happens when
m > pþ 1), then the remaining freedom of (6.2a) [and (4.1)] exists. This
freedom will be fully used to maximize the angles between the rows of
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matrix C ¼ ½T 0 : C0�0 by the following three substeps. The purpose of this
operation is to best strengthen the state and generalized state feedback
control KxðtÞ ¼ KCxðtÞ which is eventually implemented by this observer.

Step 2a: Compute all m� p possible and linearly independent
solutions cij of (6.2a) such that

cij ½DiB� ¼ 0; j ¼ 1; . . . ;m� p ð6:4Þ

Step 2b: Compute matrix

Di ¼
ci1 Di

..

.

ci;m�p Di

264
375 ð6:5Þ

Step 2c: Compute the m� p dimensional row vector ci ði ¼
1; . . . ; n�mÞ such that the angles between the rows

ti
0

In�m

� �
¼ ciDi

0
In�m

� �
ð6:6Þ

are maximized (as close to +90� as possible). The explicit
algorithms of Substep 2c will be described as Algorithms
8.2 and 8.3 in Chap. 8. Because of the special form of
matrix C in (5.5), Substep 2c implies the maximization of
the angles between the rows of matrix ½T 0 : C0�0. In
addition, maximizing row vector angles also implies
maximizing the row rank of the same matrix. The second
maximization is much easier than the first (only nonzero
angles between the vectors are required), and is guaranteed
to be achieved by Algorithms 8.2 and 8.3 even though the
first maximization may not be.

It is obvious that TB ¼ 0 is satisfied or best satisfied by Algorithm 6.1
[after (4.1) is satisfied].

6.2 ANALYSIS AND EXAMPLES OF THIS DESIGN
SOLUTION

Design algorithm 5.3 [for (4.1)] and design algorithm 6.1 [for (4.3)]
completely determine the dynamic part of observer feedback compensator
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and essentially define the new design approach of this book. This design is
analyzed theoretically and is illustrated by six numerical examples in this
section.

Conclusion 6.1

A sufficient condition to satisfy (4.1) and (4.3) exactly is m > p. It is obvious
that Algorithm 5.3 satisfies (4.1) for all observable plant systems ðA;B;CÞ,
while (4.3) [or (6.2)] can always be satisfied by the remaining freedom of
(4.1) (the ci parameters) if m > p.

Another sufficient condition to satisfy (4.1) and (4.3) exactly is that the
plant system has at least one stable transmission zero. This is because from
the property of transmission zeros (say zi) described after Definition 1.5,
there exists at least one vector (say, ½ti : li�) such that

½ti : li�S ¼ ½ti : li�
A� ziI : B
�C : 0

� �
¼ 0 ð6:7Þ

if m 6> p. Because zi is matched by an eigenvalue li of F (see the beginning of
Sec. 5.2), the comparison between (4.1) and the left n columns of (6.7) and
the comparison between (4.3) and the right p columns of (6.7) indicate that ti
and li of (6.7) are the i-th row of T and L of (4.1) and (4.3), respectively. In
other words, (4.1) and (4.3) are automatically satisfied together if zi is
matched by li.

It should be noticed that the number of rows of solution ðF ; T ; LÞ of
(4.1) is freely adjustable and can be as low as one. Therefore the existence of
at least one stable transmission zero zi implies the existence of solution of
(4.1) and (4.3).

A sufficient condition for m 6> p is also a sufficient condition for
m > p, because the former case is more difficult (has less output
measurement information but more controls to realize) than the latter
case, as proved by the first part of this conclusion. Definition 1.5 also implies
that the existence of stable transmission zeros is also a necessary condition
to satisfy (4.1) and (4.3) exactly if m 6> p.

Conclusion 6.2

It is obvious that Algorithms 5.3 and 6.1 fully used the entire design freedom
of observer dynamic part ðF ; T ; LÞ (after the eigenvalues of F are
determined) to satisfy (4.1) and (4.3) and to maximize the angles between
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the rows of matrix C ¼ ½T 0 : C0�0 [see Conclusion 5.3 and Algorithm 6.1
(Case B)].

Conclusion 6.3

If the plant system ðA; B; CÞ either has n�m stable transmission zeros or
satisfies (1) minimum-phase; (2) rankðCBÞ ¼ p; and (3) m5p, then the
resulting matrix C ¼ ½T 0 : C0�0 of Algorithms 5.3 and 6.1 is nonsingular. In
other words, Algorithms 5.3 and 6.1 will result in an exact LTR state
observer if the plant system satisfies the above conditions.

Proof

The proof is divided into two parts, A and B.

Part A: The plant system has n�m stable transmission zeros
From Conclusion 6.1, for general plant system ðA; B; CÞ with m 6> p,

there exists an additional linearly independent row of solution ðF ; T ; LÞ of
(4.1) and (4.3) if and only if there exists an additional plant system stable
transmission zero. From Conclusion 5.2, the n�m rows of T corresponding
to the n�m stable transmission zeros can always be made linearly
independent of each other and of the rows of matrix C. Thus the necessary
and sufficient condition for the plant system GðsÞ with m 6> p, to have an
exact solution of (4.1), (4.3) and a nonsingular matrix C ¼ ½T 0 : C0�0, is that
GðsÞ has n�m stable transmission zeros.

Similar to the last argument of Conclusion 6.1, the sufficient condition
for m 6> p is also a sufficient condition for m > p.

Part B: The plant system satisfies ð1Þ minimum-phase, (2) rankðCBÞ ¼ p,
and (3) m5p

First, because m ¼ p and rankðCBÞ ¼ p guarantee n�m plant system
transmission zeros [Davison and Wang, 1974], the additional condition of
minimum-phase guarantees n�m stable plant system transmission zeros.
Thus the proof of Part A of this conclusion can be used to prove Part B for
the case of m ¼ p.

For the case of m > p of Part B, the proof is indirect via the proof that
the above three conditions are sufficient conditions for the existence of
unknown input observers or exact LTR state observers which satisfy (4.1),
(4.3), and rank ðCÞ ¼ n (see Sec. 4.3). Because Conclusion 6.2 shows that
Algorithms 5.3 and 6.1 fully used the remaining observer dynamic part
design freedom to satisfy (4.1), (4.3) and maximized rank of C after the
eigenvalues of F are assigned, and because the eigenvalues of F and the poles
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of unknown input observers are similarly assigned, matrix C of Algorithms
5.3 and 6.1 will have the maximum rank n and will be nonsingular if the
unknown input observer exists.

There have been a number of such proofs in the literature [Kudva et
al., 1980; Hou and Muller, 1992; Syrmos, 1993b]. It seems that the proof in
Hou and Muller [1992] is most complete and explicit. This proof is presented
in the following, with minor revision.

Let a nonsingular matrix

Q ¼ ½B : B� ð6:8Þ

where B is an arbitrary matrix which makes Q nonsingular. Then make a
similarity transformation on the plant system ðA; B; CÞ:

xðtÞ ¼ Q�1xðtÞ4
¼
½x1ðtÞ0 : x2ðtÞ0�0 ð6:9Þ

and

ðQ�1AQ;Q�1B;CQÞ4
¼

A11 : A12

A21 : A22

� �
;

Ip
0

� �
; ½CB : CB�

� �
ð6:10Þ

From (6.9) and (6.10),

_xx2ðtÞ ¼ A21x1ðtÞ þ A22x2ðtÞ ð6:11aÞ
yðtÞ ¼ CBx1ðtÞ þ CBx2ðtÞ ð6:11bÞ

Because m > p and Rank ðCBÞ ¼ p, all columns of CB are linearly
independent. Hence we can set a nonsingular matrix

P ¼ ½CB : CB�

where CB is an arbitrary matrix which makes matrix P nonsingular.
Multiplying P�1 on the left-hand side of (6.11b) we have

P�1yðtÞ 4
¼

P1

P2

� �
yðtÞ ¼ Ip : P1CB

0 : P2CB

� �
x1ðtÞ
x2ðtÞ

� �
ð6:12Þ

From the first p rows of (6.12),

x1ðtÞ ¼ P1½yðtÞ � CBx2ðtÞ� ð6:13Þ
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Substituting (6.13) and (6.12) into (6.11), we have the following system of
order n� p

_xx2ðtÞ ¼ ðA22 � A21P1CBÞx2ðtÞ þ A21P1yðtÞ ð6:14aÞ
4
¼
~AAx2ðtÞ þ ~BByðtÞ

yðtÞ4
¼
P2yðtÞ ¼ P2CBx2ðtÞ4¼

~CCx2ðtÞ ð6:14bÞ

Because system (6.14) does not involve the original plant system input uðtÞ,
its corresponding state observer is an unknown input observer. In addition,
if x2ðtÞ is estimated by this observer, then from (6.13) x1ðtÞ can also be
estimated. Thus the sufficient condition for the existence of unknown input
observer of the original plant system is equivalent to the detectability of
system (6.14), plus the RankðCBÞ ¼ p and m > p conditions which made the
system formulation (6.14) possible.

Because for the system (6.10),

Rank

sIp � A11 �A12 : Ip

�A21 sIn�p � A22 : 0

CB CB : 0

264
375 ð6:15aÞ

¼ pþ Rank
�A21 sIn�p � A22

CB CB

� �
¼ pþ Rank

In�p 0

0 P�1

� � �A21 sIn�p � A22

CB CB

� � �P1CB Ip

In�p 0

" # !

¼ pþ Rank

sIn�p � ~AA �A21

0 Ip

~CC 0

264
375

gn� p

gp

gm� p

¼ 2pþ Rank
sIn�p � ~AA

~CC

" #
ð6:15bÞ

A comparison of (6.15a) and (6.15b) shows that the transmission zeros of
system (6.10) equal the poles of unobservable part of system (6.14).
Therefore, the necessary and sufficient condition for system (6.14) to be
detectable is that all transmission zeros of plant system (6.10) are stable [or
that (6.10) is minimum-phase]. Thus the proof.
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Conclusion 6.4

The conditions that a plant system is minimum-phase and that RankðCBÞ ¼ p
are necessary for the plant system to have exact LTR state observer.

Proof

The proof of Conclusion 6.3 shows the condition that all plant system
transmission zeros are stable (minimum-phase) is a necessary condition for
the existence of unknown input observers.

For matrix C ¼ ½T 0 : C0�0 be nonsingular, CB must have full-column
rank if TB ¼ 0 (see Example A.7).

The conditions of Conclusion 6.3 and 6.4 are summarized in the
following Table 6.1, which shows that the condition of n�m stable
transmission zeros is stronger than the condition of minimum-phase and
rankðCBÞ ¼ p. The two conditions are equivalent (both necessary and
sufficient) for the case m ¼ p, but the former is not a necessary condition,
while the latter is if m > p; and the latter is not a sufficient condition, while
the former is if m < p. Thus between the two conditions themselves, the
former is a sufficient condition of the latter, while the latter is only a
necessary condition (but not a sufficient condition) of the former. Hence the
former condition is even more strict than the latter. This result conforms
with the existing properties about transmission zeros [Davison and Wang,
1974].

Table 6.1 also shows that in any case the condition of minimum-phase
and RankðCBÞ ¼ p is a necessary condition for the existence of exact LTR
state observers. It is difficult to require that all existing transmission zeros be

Table 6.1 Necessary and Sufficient Conditions for the Existence of a
Dynamic Output Feedback Compensator Which Implements Arbitrarily
Given State Feedback Control

Conditions m < p m ¼ p m > p

Has n �m stable
transmission
zeros

Necessary and
sufficient

Necessary and
sufficient

Sufficient

Minimum-phase
and CB full-
column rank

Necessary Necessary and
sufficient

Necessary and
sufficient
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stable (see Exercises 4.2 and 4.6). In SISO systems, rankðCBÞ ¼ p (or
CB 6¼ 0) implies the existence of n�m zeros. In MIMO systems, this
condition is also closely related to the number of zeros [see Davison and
Wang, 1974] and is unsatisfied by many practical systems such as airborne
systems. Thus the existing result of LTR is very severely limited and is in
fact invalid for most plant systems.

From Conclusion 6.1, the new design approach of Algorithms 5.3 and
6.1 requires either the existence of at least one stable transmission zero or
m > p. Because almost all plants with m ¼ p have n�m transmission zeros
[Davison and Wang, 1974], m ¼ p can also be the sufficient condition of
(4.1) and (4.3) for most cases (see Exercises 4.3 and 4.7). Thus the
restrictions of minimum-phase and rankðCBÞ ¼ p of Conclusion 6.3 are
almost completely eliminated. Thus our new design is valid for most
practical systems. It is also common to have m > p because it is generally
much easier to add measurements (or m) to a system than to add controls
(or p) to a system. This significant generalization of the critical robust
control design is possible because the new design approach of this book
avoids the realization of separately designed and arbitrarily given state
feedback control.

Example 6.1

This is an example of four plant systems which share a common system
matrix pair ðA; CÞ

A ¼

x x x : 1 0 0 : 0
x x x : 0 1 0 : 0
x x x : 0 0 1 : 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .
x x x : 0 0 0 : 1
x x x : 0 0 0 : 0
x x x : 0 0 0 : 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .
x x x : 0 0 0 : 0

26666666666664

37777777777775
and

C ¼
1 0 0 : 0 0 0 : 0
x 1 0 : 0 0 0 : 0
x x 1 : 0 0 0 : 0

24 35 ð6:16Þ

where ‘‘x’’’s are arbitrary elements. Thus this example is very general.
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The matrix pair ðA; CÞ of (6.16) is in observable canonical form (1.16)
or (5.8b). The four plant systems are distinguished by their respective B
matrices:

B1 ¼

1 0
1 1
1 0

. . . : . . . :
�1 1
1 �1
1 2

. . . : . . . :
�2 �2

26666666666664

37777777777775
B2 ¼

0 0
0 1
1 0
. . . . . .
1 0
2 2
3 1
. . . . . .
1 1

26666666666664

37777777777775
B3 ¼

1 0
1 0
1 0

. . . . . . :
�1 1
1 2
1 1

. . . . . . :
�2 �2

26666666666664

37777777777775
and

B4 ¼

1 0
1 1
1 0

. . . : . . . :
�1 1
�2 �1
�2 2
. . . : . . . :
�2 �1

26666666666664

37777777777775
Using the method of Example 1.7 we can derive directly the polynomial
matrix fraction description of the corresponding transfer function
GðsÞ ¼ D�1ðsÞNðsÞ, where polynomial matrix DðsÞ is common for all four
systems, and the four different NðsÞ polynomial matrices are:

N1ðsÞ ¼
ðsþ 1Þ ðs� 2Þ : ðs� 2Þ
ðsþ 1Þ : ðs� 1Þ
ðsþ 1Þ : 2

264
375

N2ðsÞ ¼
ðsþ 1Þ : 1

2 : ðsþ 2Þ
ðsþ 3Þ : 1

264
375
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N3ðsÞ ¼
ðsþ 1Þ ðs� 2Þ : ðs� 2Þ
ðsþ 1Þ : 2
ðsþ 1Þ : 1

24 35
and

N4ðsÞ ¼
ðs� 2Þ ðsþ 1Þ : ðs� 1Þ
ðs� 2Þ : ðs� 1Þ
ðs� 2Þ : 2

24 35
The four NðsÞ matrices reveal that while all four systems have

m ¼ 3 > 2 ¼ p, only the first and the third systems have one stable
transmission zero �1, and only the fourth system has an unstable
transmission zero 2.

Thus the dynamic matrix F of the four corresponding dynamic output
feedback compensators can be commonly set as

F ¼ diag f�1; �2; �3; �4g

which includes all possible stable transmission zeros of the four plant
systems.

Because Step 1 of Algorithm 5.3 is based on matrices ðA; C; FÞ which
are common for the four plant systems, the result of this step is also
common for the four systems. The following four basis vector matrices for
the four eigenvalues of F are computed according to (5.10b):

D1 ¼
1 0 0 : �1 0 0 : 1

0 �1 0 : 0 1 0 : 0

0 0 �1 : 0 0 1 : 0

264
375

D2 ¼
4 0 0 : �2 0 0 : 1

0 �2 0 : 0 1 0 : 0

0 0 �2 : 0 0 1 : 0

264
375

D3 ¼
9 0 0 : �3 0 0 : 1

0 �3 0 : 0 1 0 : 0

0 0 �3 : 0 0 1 : 0

264
375
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and

D4 ¼
16 0 0 : �4 0 0 : 1
0 �4 0 : 0 1 0 : 0
0 0 �4 : 0 0 1 : 0

24 35
The result of Step 2 of Algorithm 5.3 (or Algorithm 6.1) is computed

according to (6.2a):

T1 ¼

½0 1 1�D1

½1 4=5 16=5�D2

½1 5=6 25=6�D3

½1 6=7 36=7�D4

26664
37775

¼

0 �1 �1 0 1 1 0

4 �8=5 �32=5 �2 4=5 16=5 1

9 �15=6 �75=6 �3 5=6 25=6 1

16 �24=7 �144=7 �4 6=7 36=7 1

26664
37775

T2 ¼

½0 1 �1�D1

½1 1 �1�D2

½1 1 0�D3

½0 1 2�D4

26664
37775

¼

0 �1 1 0 1 �1 0

4 �2 2 �2 1 �1 1

9 �3 0 �3 1 0 1

0 �4 �8 0 1 2 0

26664
37775

T3 ¼

½0 1 �2�D1

½1 0 4�D2

½1 0 5�D3

½1 0 6�D4

26664
37775

¼

0 �1 2 0 1 �2 0

4 0 �8 �2 0 4 1

9 0 �15 �3 0 5 1

16 0 �24 �4 0 6 1

26664
37775
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and

T4 ¼

½2 �1 1�D1

½1 �1=5 6=5�D2

½1 0 2�D3

½1 1=7 20=7�D4

26664
37775

¼

2 1 �1 �2 �1 1 2

4 2=5 �12=5 �2 �1=5 6=5 1

9 0 �6 �3 0 2 1

16 �4=7 �80=7 �4 1=7 20=7 1

26664
37775

It can be easily verified that the above four matrices satisfy (4.1) [the
right n�m ð¼ 4Þ columns] and (4.3) ðTiBi ¼ 0; i ¼ 1; . . . ; 4Þ. Because the
left m ð¼ 3Þ columns of (4.1) can always be satisfied by matrix L as shown in
(5.16), we consider the above four matrices the exact solution of (4.1) and
(4.3). The matrix triples ðF ; Ti; LiÞ ði ¼ 1; . . . ; 4Þ fully determine the
dynamic part (4.10a) of the four dynamic output feedback compensators.
This result conforms with Conclusion 6.1 (the first part).

Let us now analyze the design of output part (4.10b) of these four
dynamic output feedback compensators. Because the matrices Ci ¼ ½T 0

i :
C0�0 ði ¼ 1; 2Þ are nonsingular, the first two compensators can generate
arbitrary and ideal state feedback control Ki ¼ KiCi ði ¼ 1; 2Þ. This result
conforms with Conclusion 6.3 and Table 6.1. On the other hand, the
matrices Ci ¼ ½T 0

i : C
0�0 ði ¼ 3; 4Þ have rank 6 and are singular. Hence only

constrained state feedback control Ki ¼ KiCi ði ¼ 3; 4Þ can be implemented
by the last two compensators. This result again conforms to Conclusion 6.4
and Table 6.1 because the third plant system has rankðCBÞ ¼ 1 < 2 ¼ p and
the fourth plant system has a nonminimum-phase zero (2).

For the third and fourth plant systems, there exists no other general
and systematic design method which can fully use the design freedom to
achieve feedback system performance and robustness. However, Algorithms
5.3 and 6.1 have systematically and generally designed the dynamic part of
the dynamic output feedback compensator for these two plant systems as
follows.

Because rank ðCiÞ ¼ 6 < 7 ¼ n; ði ¼ 3; 4Þ, we can select six out of the
seven rows of Ci to form a new Ci ði ¼ 3; 4Þ so that Rank ðCiÞ still equals 6.
Suppose we select the first three rows of matrix Ti and all three rows of
matrix C to form Ci ði ¼ 3; 4Þ. Then the new dynamic part of the
corresponding dynamic output feedback compensator would be ðFi; Ti; LiÞ,
which is formed by the first three rows of original ðFi;Ti;LiÞ ði ¼ 3; 4Þ, and
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the state feedback control gain implemented by these two compensators is

K3 ¼ K3½T
0
3 : C

0�0 ¼ K3

0 �1 2 0 1 �2 0
4 0 �8 �2 0 4 1
9 0 �15 �3 0 5 1

1 0 0 0 0 0 0
x 1 0 0 0 0 0
x x 1 0 0 0 0

2666666664

3777777775
and

K4 ¼ K4½T
0
4 : C

0�0

¼ K4

2 1 �1 �2 �1 1 2

4 2=5 �12=5 �2 �1=5 6=5 1

9 0 �6 �3 0 2 1

1 0 0 0 0 0 0

x 1 0 0 0 0 0

x x 1 0 0 0 0

2666666666664

3777777777775
respectively. These two state feedback controls are equivalent to a static
output feedback control with six independent outputs. Therefore, they are
not much weaker than the ideal state feedback control and are much
stronger than the ordinary static output feedback control, which corre-
sponds to only three outputs. For example, these two controls can
arbitrarily assign the eigenvalues of the corresponding feedback system
matrix A� BKiCi ði ¼ 3; 4Þ because 6þ p ¼ 6þ 2 ¼ 8 > 7 ¼ n [Kimura,
1975], while the ordinary static output feedback control cannot because
3þ p ¼ 3þ 2 ¼ 5 < 7 ¼ n.

More important, all four compensators guarantee that the feedback
system poles be the union of f�1; �2; �3g and the eigenvalues of A�
BKi ði ¼ 1; . . . ; 4Þ (Theorem 4.1), and guarantee that the feedback system
loop transfer function equals �KiðsI � AÞ�1Bði ¼ 1; . . . ; 4Þ (Theorem 3.4).
This result certainly cannot be achieved systematically by other existing
design methods for the third and fourth plant systems, especially the fourth,
which is nonminimum-phase.
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Example 6.2 The Case When Eigenvalues of F are Complex
Conjugate

Let
A : B

C : 0

� �

¼

1:0048 �0:0068 �0:1704 �18:178 : 39:611

�7:7779 0:8914 10:784 0 : 0

1 0 0 0 : 0

0 0 0 0 : 1

1 0 0 0 : 0

0 1 0 0 : 0

2666666666664

3777777777775
This is the state space model of a combustion engine system [Liubakka,
1987]. Its four states are manifold pressure, engine rotation speed, manifold
pressure (previous rotation), and throttle position, respectively. Its control
input is the throttle position (next rotation) and its two output measure-
ments are manifold pressure and engine rotation speed, respectively.

Apply the operation of Steps 2 and 3 of Algorithm 5.2 ð j ¼ 2Þ, where
the operator matrix

H ¼

1 0 0 0
0 1 0 0
0 0 �0:0093735 0:999956
0 0 �0:99996 �0:0093735

2664
3775

is determined by the elements ½ �0:1704 �18:178 � of matrix A. The
resulting block-observable Hessenberg form system matrices are

H 0AH : H 0B

CH : 0

� �
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¼

1:0048 �0:0068 18:1788 0 : 39:6111

�7:7779 0:8914 �0:1011 10:7835 : 0

�0:00937 0 0 0 : �1

1 0 0 0 : �0:0093735

1 0 0 0 : 0

0 1 0 0 : 0

2666666666664

3777777777775
Because this system does not have any stable transmission zeros, we

arbitrarily select matrix

F ¼ �1 1
�1 �1

� �

with eigenvalues �1+j. Substituting matrices H 0AH and F into (5.13b) of
Step 1, Algorithm 5.3, we have

½D1:D2� I2 6H 0AH
0

I2

� �
� F 0 6

0

I2

� �� �

¼

�0:05501 0 1 0 : �0:05501 0 0 0

�0:0005157 �0:092734 0 1 : �0:0005157 �0:092734 0 0

0:05501 0 0 0 : �0:05501 0 1 0

0:0005157 0:092734 0 0 : �0:0005157 �0:092734 0 0

26666664

37777775

6

18:1788 0 : 0 0

�0:1011 10:7835 : 0 0

1 0 : 1 0

0 1 : 0 1

0 0 : 18:1788 0

0 0 : �0:1011 10:7835

�1 0 : 1 0

0 �1 : 0 1

266666666666666664

377777777777777775
¼ 0

Design for Robustness Realization
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Substituting ½D1:D2� in (6.2b) of Algorithm 6.1, we have

½�0:0093735 1 0 0�
c

�3:179 : �2:179

�0:029801 : �0:02043

2:179 : �3:179

0:02043 : �0:029801

26666664

37777775 ¼ 0

D1B D2B ¼ 0

Thus the result of Step 2 of Algorithm 5.3 is

T ¼ cD1

cD2

� �
¼ 0 �0:092734 �0:0093735 1

0 �0:92734 0 0

� �

This matrix corresponds to system matrix ðH 0AH; H 0B; CHÞ. Hence it must
be adjusted to correspond to the original system matrix ðA; B; CÞ (see the
beginning of Sec. 5.2):

T ¼ TH 0 ¼ 0 �0:92734 1 0
0 �0:92734 0 0

� �

Substituting this T into (5.16) of Step 3, Algorithm 5.3, we have

L ¼ ðTA� FTÞ I2
0

� �
¼ 1:721276 �0:082663

0:721276 �0:26813

� �

It can be verified that ðF ; T ; LÞ satisfies (4.1) and (4.3), but the matrix
C ¼ ½T 0 : C0�0 is singular. This is because the system has a nonminimum-
phase zero (0.4589). Nonetheless, matrix C has one more linearly
independent row than the original matrix C. Hence with the guaranteed
robustness realization [by (4.3)], the compensator F ; T ; LÞ of (4.10) realizes
a stronger state feedback control KCxðtÞ than KyCxðtÞ of the ordinary static
output feedback control.

In addition, Example 7.3 of Chap. 7 provides a numerical example
about the multiple eigenvalue case of Algorithm 5.3. Thus complete
eigenvalue cases have been shown by numerical examples in this book.
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Example 6.3 A Case with Approximate Solution of (4.1) and
(4.3)

Let the system matrix be

ðA; B; CÞ ¼

x x 1 0
x x 0 1
x x 0 0
x x 0 0

2664
3775;

1 3
1 2
2 6

�1 �2

2664
3775; 1 0 0 0

0 1 0 0

� �0BB@
1CCA

where ‘‘x’’’s are arbitrary entries. Because this system has the same number
of inputs and outputs ðm ¼ pÞ and satisfies rank ðCBÞ ¼ p ¼ 2, it has
n�m ¼ 4� 2 ¼ 2 transmission zeros. Because this system is in observable
canonical form, using the procedure of Examples 1.7, matrix NðsÞ of the
polynomial matrix fraction description of the corresponding transfer
function GðsÞ ¼ D�1ðsÞNðsÞ can be directly derived as

NðsÞ ¼ sþ 2 3ðsþ 2Þ
s� 1 2ðs� 1Þ

� �
Thus this system has two ð¼ n�mÞ transmission zeros (�2 and 1) and is
nonminimum-phase.

Let us set F ¼ diag f�2;�1g, where �2 matches the stable transmis-
sion zero of ðA; B; CÞ and �1 is arbitrarily chosen. Solving (5.10b), we have

D1 ¼
�2 0 1 0
0 �2 0 1

� �
and D2 ¼

�1 0 1 0
0 �1 0 1

� �
Substituting this result into (6.2a),

c1D1B ¼ c1
0 0

�3 �6

� �
¼ 0

and

c2D2B ¼ c2
1 3

�2 �4

� �
¼ 0 ð6:17Þ

imply that c1 ¼ ½ x 0 � ðx=0Þ, while the exact solution of c2 does not exist.
This is because the corresponding transmission zero ð�2Þ of c1 is matched
by the eigenvalue of F, while the transmission zero (1) corresponding to c2 is
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not. This example shows that having n�m stable transmission zeros is a
necessary condition for a plant system with ðm ¼ pÞ to have exact solution
to (4.1), (4.3) and nonsingular C. This example also conforms with
Conclusion 6.1 (the second part).

To minimize c2D2B of (6.17) in a least-square sense, we use (6.3) of
Algorithm 6.1 such that

c2 ¼ u02 ¼ ½ 0:8174 0:576 �

Here u2 is the normalized right eigenvector of matrix ½D2B�½D2B�0 and its
smallest eigenvalue s22 ¼ 0:13393. In other words, s2 ¼ 0:366 is the smallest
singular value of matrix D2B and u2 is the second column of unitary matrix
U of the singular value decomposition of D2B. It can be verified that
kc2D2Bk ¼ s2 which is the least-square residual of (6.17) (see Example A.6).

The above result provides us with two possible feedback compensa-
tors, whose dynamic part (3.16a) will be, respectively,

ðF1;T1Þ ¼ ð�2; ½�2c1 : c1�Þ

and

ðF2;T2Þ ¼
�2 0
0 �1

� �
;

�2c1 : c1
�0:8174 � 0:576 : 0:8174 0:576

� �� �

Of these two possible compensators, the first is a dynamic output
feedback compensator (4.10) because it satisfies TB ¼ 0, while the second
does not satisfy TB ¼ 0 and hence is an observer (3.16) only. Therefore, the
first compensator guarantees that the feedback system loop transfer
function equals �K1½T 0

1:C
0�0 ðsI � AÞ�1B for whatever K1, while the second

compensator does not (for its corresponding freely designed K2) (Theorem
3.4), even though the least-square gain TB of (6.17) is used in this observer.

On the other hand, the first compensator can implement only a
constrained state feedback K1½T 0

1:C
0�0 because Rank ½T 0

1:C
0�0 ¼ 3 < 4 ¼ n,

even though arbitrary eigenvalues can still be assigned to the matrix
A� BK1½T 0

1:C
0�0 because 3þ p ¼ 3þ 2 ¼ 5 > 4 ¼ n, while the second

compensator can implement arbitrary state feedback K2½T 0
2:C

0�0 because
the matrix ½T 0

2:C
0�0 is nonsingular.

We recall for nonminimum-phase plant systems, such as the one in this
example, that there is no other design method which can systematically and
analytically derive as strong a result as these two compensators.
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6.3 COMPLETE UNIFICATION OF TWO EXISTING BASIC
MODERN CONTROL SYSTEM STRUCTURES

Besides general robustness realization, the new design approach of this book
has another major theoretical significance. That is the complete unification
of two existing basic control structures of modern control theory. These two
basic structures are the exact LTR state observer feedback system and the
static output feedback system. State observer and static output feedback
have been the main control structures of modern control theory for years,
but no attempt has been made to unify these seemingly very different
structures.

The new control structure designed in this chapter—the dynamic
output feedback controller which can implement state/generalized state
feedback control, can completely unify the above two existing control
structures as its two extreme cases. This unification can be shown in Fig. 6.1,
and the properties of these three structures can be summarized in Table 6.2.

Table 6.2 shows clearly that the new control structure of this book
[structure (b)] completely unifies in all aspects the existing two basic control
structures of (a) and (c). The common feature which makes this unification
uniquely possible is the realization of state feedback control [KxðtÞ;K is a
constant] and its robustness properties ðLðsÞ ¼ �KðsI � AÞ�1BÞ.

Table 6.2 shows that control structure (a) exercises the strongest
control but is least generally designed, while control structure (c) exercises
the weakest control but is general to all plant systems. The table also shows
that control structure (b) completely unifies these two extreme properties.

A direct consequence of this unification is that the design of the output
part of dynamic output feedback compensator K ¼ KC is directly

Figure 6.1 Three modern control structures capable of realizing state/
generalized state feedback control and their robustness properties.
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compatible with the existing state feedback design (if q ¼ n) and the existing
static output feedback design (if q < n). This design will be described in
Chaps 8 and 9.

6.4 OBSERVER ORDER ADJUSTMENT TO TRADEOFF
BETWEEN PERFORMANCE AND ROBUSTNESS
[Tsui, 1999c]

One of the main and unique features of the observers based on the result of
Algorithm 6.3, is that the observer order r is completely flexible. On the
contrary, the existing observer orders are fixed. For example, the state
observer orders are fixed to be either n or n�m, and the order of a static
output feedback controller is 0.

Also because of this unique feature, our observer compensator can
completely unify exact LTR state observer and static output feedback
control, as described clearly in Sec. 6.3.

Table 6.2 Three Control Systems of Modern Control Theory

Control structure (a) (b) (c)

Controller order r n �m n �m5r50 0

Matrix C ¼ ½T 0 : C 0�0 ½T 0 : C 0�0 ½T 0 : C 0�0 C

Rank ðCÞ ¼
q ¼ r þm

n n5r þm5m m

State feedback
gain K ¼ KC

Arbitrary K (C
nonsingular)

Arbitrary to
severely
constrained
K ¼ KC

Severely
constrained
K ¼ KyC

Dynamic matrix A� BK A� BKC A� BKyC

Loop transfer
function

�K ðsI � AÞ�1B �KCðsI � AÞ�1B �KyCðsI � AÞ�1B

Generality
(conditions on
plant system)

n �m stable
transmission
zeros or
minimum
phase, rank
ðCBÞ ¼ p, and
m5p

At least one
stable
transmission
zero or m > p

None
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The reason behind this unique feature is that the dynamic part of our
observer compensator is completely decoupled. This is further enabled,
uniquely, by the Jordan form of matrix F in (4.1) and in Algorithm 5.3, and
by the design concept that a nonsingular matrix C in (4.2) is unnecessary
(see Chap. 4).

Example 6.4

Example 6.1 (the third and the fourth compensators) and Example 6.3 (the
first compensator) all show that when matrix F is in Jordan form and when a
nonsingular matrix C is no longer required, the compensator order can be
freely adjusted.

More specifically, the third and the fourth compensators of Example
6.1 have order r ¼ 3 while n�m ¼ 4, and the first compensator of Example
6.3 has order r ¼ 1 while n�m ¼ 2.

This section deals with the actual determination of this observer
compensator order r. Our determination is based on the following two basic
and clear understandings.

The first understanding is based on the formulation (4.2) of our
control K ¼ KC, where C is formed by the rows of matrices C of
(1.1b) and T of (4.1) and (4.3). Equation (4.2) is a constraint on the
state feedback gain K (see Subsection 3.2.2). Therefore, the higher the
observer order r (which equals the row rank of matrix T), the higher
the row rank ðrþmÞ of matrix C, the less the constraint on K (see
Appendix A.1), and the more powerful the corresponding control
KxðtÞ.

The second understanding is based on Eq. (4.3) ðTB ¼ 0Þ, which is the
key condition for realizing the loop transfer function/robustness properties
of our control. Because B is given, the smaller the row rank r of matrix T,
the easier to satisfy (4.3) (see Appendix A.1).

In addition to these two simple and basic understandings, our observer
order determination is further based on the following two obvious system
design principles.

The first system design principle is that the system must be stable.
Therefore, based on the first of the above two basic understandings, the
order r has to be high enough so that the corresponding matrix A� BKC is
stabilizable.

Stabilization, which only requires all eigenvalues of matrix A� BKC
be in the stable region rather than in exact locations, is substantially easier
than arbitrary eigenvalue assignment of matrix A� BKC (see Subsection
8.1.4). Now because rank ðCÞ6p > n is generically sufficient for arbitrary

Copyright  2004 by Marcel Dekker, Inc. All Rights Reserved.



www.manaraa.com

eigenvalue assignment of A� BKC [Wang, 1996], this condition should be
sufficient for the stabilization of A� BKC. Therefore, we should have a high
enough observer order r such that

ðrþmÞ6p > n or r >
n

p
�m ð6:18Þ

This should be the lower bound of observer order r.
The second system design principle is that the effectiveness (especially

the robustness property) of control KxðtÞ is totally lost if TB=0. Therefore,
based on the second of the above two basic understandings, the observer
order r should be low enough so that TB can be sufficiently minimized.

Based on Conclusion 6.1 and the second column of Table 6.2, if the
open-loop system ðA; B; CÞ has either m > p or at least one stable
transmission zero, than TB ¼ 0 can be fully satisfied [in addition to (4.1)].
Then from the first of the above two basic understandings, we should have
the highest possible observer order r, say r0, while keeping TB ¼ 0
satisfied.

Definition 6.1

Let r04¼ maximal possible rank ðC4¼ ½T 0 : C0�0Þ �m where matrix T satisfies
(4.1) and (4.3).

From Conclusion 6.3 and its proof, r0 equals the number of stable
transmission zeros of system ðA; B; CÞ if m4 p.

What is the value of r0 for the cases of m > p? It differs from system to
system, depends on parameters such as rank(CB) and the numbers of system
stable and unstable transmission zeros (even though such systems
generically do not have transmission zeros [Davison and Wang, 1974]),
and ranges between 0 and n�m. There is no simple and general formula for
r0 directly from the parameters of system ðA; B; CÞ. Fortunately, Case B of
Algorithm 6.1 guarantees the simple and direct computation of r0, as
convincingly argued by Conclusion 6.2.

There is another way to compute the value of r0 and it computes r0

before the computation of the solution of (4.1) and (4.3). This computation
is based on a special similarity transformation on the system ðA; B; CÞ
called the ‘‘special coordinate basis (s.o.b.)’’ [Saberi et al., 1993]. In the
s.o.b., the system is decoupled into five parts with five dimensions such as
the number of system stable transmission zeros and the number of system
unstable transmission zeros, etc. The value of r0 can be determined easily
from these five dimensions, because the state observers of some of these

Copyright  2004 by Marcel Dekker, Inc. All Rights Reserved.



www.manaraa.com

decoupled system parts of s.o.b. satisfy automatically TB ¼ 0. However, it is
obvious and it is accepted that the computation of this s.o.b. itself is very
difficult and ill conditioned [Chu, 2000], even though numerically more
stable algorithm of computing this s.o.b. is presented in Chu [2000].

In addition to the ill condition of the computation of s.o.b., the
corresponding state observer of s.o.b. has order fixed at r0 and is not
adjustable at all. Then what if this r0 cannot satisfy (6.18) or (6.19) (if a
higher design requirement is imposed), or what if this r0 is too high to be
realized? These problems cannot be even discussed based on the state
observers since the state observer order is fixed.

If r05r of (6.18), then (4.1), (4.3) and the stabilization of matrix
A� BKC are guaranteed. Because (4.1) implies that the feedback system
poles are composed of the eigenvalues of matrices F and A� BKC
(Theorem 4.1), and (4.3) implies an output feedback compensator [see
(4.10)], a solution to the strong stabilization problem is automatically
derived by our design. The strong stabilization problem is defined as
stabilizing the feedback system [say matrix A� BKC] by a stable output
feedback compensator [Youla et al., 1974 and Vidyasagar, 1985].

In practice a control system design that requires advanced control
theory usually deserve both high performance and robustness, in addition to
stability only. Therefore the control KCxðtÞ should be able to assign
arbitrary eigenvalues and at least some eigenvectors. Fortunately, such
design algorithm is presented in Subsection 8.1.3, and is executable if
rankðCÞ þ p > n. Therefore in such designs, it is required that at least

ðrþmÞ þ p > n or r > n� p�m ð6:19Þ

is satisfied.
It is proven mainly by the exercises of Chap. 4, and partially by

Exercises 8.6 and 8.7, that (6.19) can be satisfied by most open-loop systems,
and that (6.18) can be satisfied by a great majority of the open-loop systems.

Comparing the static output feedback controls where r ¼ 0 (see
Table 6.2 and Subsection 3.2.2), (6.18) and (6.19) cannot be satisfied as soon
as m6p4n and mþ p4n, respectively (see for Example 6.3 and Exercises
6.7 and 8.6).

In case the desired value of r of (6.19) or even (6.18) is higher than the
value of r0 (which guarantees TB ¼ 0), the remaining r� r0 rows of T [or
their corresponding ci vectors of (6.1)] should be computed to make the
corresponding matrix C4¼ ½T 0 : C0�0 full row rank instead of making TB (or
ciDiB; i ¼ r0 þ 1 to rÞ ¼ 0. Nonetheless, these r� r0 rows of T should still be
selected out of the n�m� r0 rows of T and should still be computed, so that
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the product TB (or kciDiBk; i ¼ r0 þ 1 to r) has the smallest possible
magnitude.

EXERCISES

6.1 Verify the computation of Algorithm 6.1 to satisfy (4.3) for the four
systems of Example 6.1.

6.2 Verify the computation of Algorithm 6.2 to satisfy (4.3) for Example
6.2.

6.3 Verify the computation of Algorithm 6.3 to satisfy (4.3) for Example
6.3.

6.4 Suppose matrices A, C, and Di ðand li; i ¼ 1; . . . ; 4Þ are all the same as
that of Example 7.3. Let the matrix B be generally given. Repeat
Algorithm 6.1.

(a) Let c1 ¼ ½1; c1; c2�. Compute c1 such that c1D1B ¼ 0.

Answer :

½ c1 c2 � ¼ �½�2 0 �1 1 0 0 1 �B6
1 �1 �1 1 1 0 0

0 0 0 0 0 1 0

� �
B

� ��1

(b) Let c2 ¼ ½c1; 1; c2�. Compute c2 such that c2D2B ¼ 0.

Answer :

½ c1 c2 � ¼ �½�1 �2 �1 1 1 0 0 �B6
�1 �1 0 0 0 0 1

1 1 �1 0 0 1 0

� �
B

� ��1

(c) Let c3 ¼ ½c1; c2; 1�. Compute c3 such that c3D3B ¼ 0.

Answer :

½ c1 c2 � ¼ �½ 2 2 �2 0 0 1 0 �B6
�2 �2 1 �1 0 0 1

�3 �3 �1 1 1 0 0

� �
B

� ��1
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(d) Let c4 ¼ ½1; c1; c2�. Compute c4 such that c4D4B ¼ 0.

Answer :

½ c1 c2 � ¼ �½ 6 1 �2 2 0 0 1 �B6
3 0 �1 1 1 0 0

�1 �1 1 0 0 1 0

� �
B

� ��1

Of course the ci vectors do not need to (and some times cannot) be
fixed at the above forms.

6.5 Change matrix B of the system of Example 6.1 to

1 1 1 : �3 �1 �1 : 2
0 0 0 : 1 2 1 : �2

� �0
so that RankðCBÞ ¼ 1 ¼ p� 1 and the system has one unstable
transmission zero 1. What is the value r0 of this system?
Answer: r0 ¼ 2 ¼ n�m� 2.

6.6 Change matrix B of the system of Example 6.1 to

1 1 1 : �3 �1 �1 : 2

0 0 0 : 1 0 0 : �2

� �0
so that RankðCBÞ ¼ 1 ¼ p� 1 and the system has two unstable
transmission zeros 1 and 2. What is the value r0 of this system?
Answer: r0 ¼ 1 ¼ n�m� 3.

6.7 Repeat Example 6.3 for a similar system

ðA;B;CÞ ¼

x x 1 0

x x 0 1

x x 0 0

x x 0 0

26664
37775;

1 2

1 3

3 6

�1 �3

26664
37775; 1 0 0 0

0 1 0 0

� �0BBB@
1CCCA

Instead of having �2 and 1 as transmission zeros of Example 6.3, this
new system has �3 and 1 as transmission zeros.

6.8 In single-input and single-output systems GðsÞ ¼ D�1ðsÞNðsÞ, the
condition rankðCBÞ ¼ p (or CB 6¼ 0) implies NðsÞ has order
n�m ¼ n� 1. Thus the SISO systems have generically n� 1 zeros
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[Davison and Wang, 1974]. Using the result of Example 1.7 and
Exercises 1.3 to 1.6, repeat the above analysis on how the condition
rankðCBÞ ¼ p will imply to the number of MIMO system transmission
zeros.
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7

Observer Design for Minimized Order

As stated at the beginning of Chap. 6, Step 2 of Algorithm 5.3 revealed the
remaining freedom of (4.1). The first application of using this freedom is to
realize the robustness properties of state feedback control, and is presented
in Chap. 6. The second application of using this freedom is to minimize the
observer order, and is presented in this chapter. The objectives of these two
applications are very different.

Like the failure to realize the robustness properties of state feedback
control, high observer order has also been a major drawback that has
limited the practical application of state space control theory. Lower order
observers not only are much easier to realize, but also have generally much
smoother corresponding response. Like in Chap. 6, this chapter will
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demonstrate that with the full use of the remaining freedom of (4.1), this
drawback can be effectively overcome.

However, unlike the design of Chap. 6 which determines only the
dynamic part of the observer and which results in an output feedback
compensator (4.10), the design of this chapter will completely determine the
whole observer which cannot qualify as an output feedback compensator.

The design of this chapter is also based on the unique feature of the
solution of (4.1) of Algorithm 5.3, that the rows of this solution ðF ; T ; LÞ
are completely decoupled. Thus the number of rows of this solution can be
determined freely. From the observer definition of (3.16), this number
equals the observer order r (see also Sec. 6.4 for the determination of r, but
for a purpose totally different from a minimized r).

Section 7.1 describes the design formulation of this problem, which is
claimed in Sec. 7.3 to be far simpler and the simplest possible general design
formulation of this problem.

Section 7.2 presents the simple and systematic design algorithm
(Algorithm 7.1) based on this formulation, and analyzes the general upper
and lower bounds of r which is computed by this algorithm.

Section 7.3 proves that the general observer order bounds of Sec. 7.2
are far lower than the existing ones, are the lowest possible general bounds,
and are lower enough to be practically significant even at the computer age.
Several examples are presented to demonstrate this significance and
Algorithm 7.1.

7.1 DESIGN FORMULATION [Tsui, 1985, 1993a]

As described in Example 4.3, minimal order observer design fully uses the
remaining freedom of (4.1) to satisfy (4.2) [but not (4.3)] with arbitrarily
given K, with arbitrarily given observer poles for guaranteed rate of
observation convergence, and with a minimal value of r.

As reviewed in Example 4.3, minimal order observer design has been
attempted for years since 1970 [Gopinath, 1971; Fortmann and Williamson,
1972; Kaileth, 1980, p. 527; Gupta et al., 1981; O’Reilly, 1983; Chen, 1984,
p. 371; Van Dooren, 1984; Fowell et al., 1986]. But none has used the
solution of (4.1) of Algorithm 5.3. This solution is uniquely decoupled and
shows completely and explicitly the remaining freedom of (4.1) (see Sec. 5.2
and the beginning of Chaps 6 and 7). Thus only based on this solution of
(4.1), can the minimal order observer design problem be simplified to the
solving of (4.2) only and therefore really systematically.

As reviewed in Subsection 3.2.3, only Eq. (4.2) reveals the difference
between different types of observers, such as the state observers of Examples
4.1 and 4.2 vs. the function observers of Definition 4.1, and such as the
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strictly proper type ðKy ¼ 0Þ vs. the proper type ðKy 6¼ 0Þ. The following
design formulation (7.1c) and the corresponding design algorithm (Algo-
rithm 7.1) are for proper type observers. However they can be very easily
adapted to solve the strictly proper type observer problems.

Based on the block-observable Hessenberg form of ðA; CÞ, Eq. (4.2),
like (4.1), can be partitioned into its left m columns:

K
Im
0

� �
¼ ½KZ : Ky�

T
C

� �
Im
0

� �
¼ KZT

Im
0

� �
þ KyC1 ð7:1aÞ

and its right n�m columns:

K
0

In�m

� �
4
¼

�KK ¼ KZT
0

In�m

� �
4
¼

KZ
�TT ð7:1bÞ

Because rank ðC1Þ ¼ m and Ky is completely free in (7.1a), only (7.1b) need
to be satisfied.

To simplify the problem, we assume that all observer poles are distinct
and real. Substituting the result of (6.1a) of Algorithm 5.3 (Step 1) into
(7.1b), we have

�KK ¼ KZ
�TT ¼KZ

c1

. .
.

cr

2664
3775

�DD1

..

.

�DDr

2664
3775

m . . . m n�m

ð7:1cÞ

where �KK ; �TT ; �DDi, are the right n�m columns of K;T ;Di ði ¼ 1; . . . ; rÞ of (4.2)
and (6.1a), respectively, and r equals the number of rows of matrix T or the
corresponding minimal observer order.

The unknown solution of (7.1c) is KZ and ci ði ¼ 1; . . . ; rÞ, where
parameter KZ represents the design freedom of observer output part while
ci ði ¼ 1; . . . ; rÞ represents the remaining freedom of observer dynamic part.
The parameters ci can also be considered the remaining freedom of (4.1), or
the freedom of observer eigenvector assignment because F is in Jordan form.
Hence the observer design freedom is fully used in (7.1c).

In addition, the given row blocks �DDi of (7.1c) are completely decoupled
for all i because they are basis vector matrices of observer eigenvectors.
Hence unlike any other existing minimal order observer design formulations,
(7.1c) is truly very similar to a set of linear equations.
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As a result, for the first time, (7.1c) can be solved systematically by
matrix triangularization operations from the right side of the given matrix of
(7.1c), and by back substitution (see Appendix A, Sec. A.2).

7.2 DESIGN ALGORITHM AND ITS ANALYSIS

The following design algorithm solves (7.1c) by matrix triangularization
operations from the right side of the given equation of (7.1c), and by back
substitution operation following each triangularization (see Sec. A.2).

Algorithm 7.1 Design of Minimal Order Observers [Tsui, 1985]

Step 1: Triangularize the following matrix S until it becomes

SH4
¼

�DD1

..

.

�DDn�m

�KK

266664
377775H

¼

* 0 :

. .
.

: 0

X * :

. . . . . . . . . . . . . . . . . . . . .

X

. . . . . . . . . . . . . . . . . . . . .

�DDr1þ1H

..

.

�DDn�mH

X

x . . . x ..
.

0 . . . 0

X

2666666666666666666666666664

3777777777777777777777777775



to r1m rows

/the q1-th row 11

4
¼
S

Step 2: The form of S of (7.2) indicates that the q1-th row of �KK is a
linear combination of the rows of �DDi ði ¼ 1; . . . ; r1Þ, or
11 ¼ Sci �DDiH ði ¼ 1; . . . ; r1Þ. Compute ci by back substitu-

ðr1 � 1Þmþ 1

gm

gm

r1m rows

9>>>>>>>=>>>>>>>;
(7.2)
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tion. Also set the q1-th row of matrix KZ as ½1::1 : 0 . . . 0� with
r1 ‘‘1’’s.

Step 3: Triangularize the following matrix S1 until it becomes:

S1H1 4¼

c1 �DD1H

..

.

cr1 �DDr1H

�DDr1þ1H

..

.

�DDn�mH

�KKH

266666666666664

377777777777775
H1

¼

* 0 :

. .
.

: 0

X * :

. . . . . . . . . . . . . . . . . . . . .

X

. . . . . . . . . . . . . . . . . . . . .

�DDr1þr2þ1HH1

..

.

�DDn�mHH1

X

x . . . x ..
.

0 . . . 0

X

2666666666666666666666666664

3777777777777777777777777775
4
¼
S1

Step 4: The form of S1 of (7.3) indicates that the q2-th row of �KK is a
linear combination of the rows ci �DDi ði ¼ 1; . . . ; r1Þ and the
rows of �DDi ði ¼ r1 þ 1; . . . ; r1 þ r2Þ, or

12 ¼
Xr1
i¼1

k2iðci �DDiHH1Þ þ
Xr1þr2

i¼r1þ1

cið �DDiHH1Þ



r1 þ ðr2 � 1Þmþ 1

to r1 þ r2m rows

gm
..
.

gm

/the q2-th row 12

ðq2 6¼ q1Þ

(7.3)
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Compute ½k21; . . . ; k2;r1�4¼ k2 and ci ði ¼ r1 þ 1; . . . ; r1 þ r2Þ, and then set the
q2-th row of KZ as

½ k2 : 1 . . . 1 : 0 . . . 0 � ð7:4aÞ
r1 r2

Steps 3 and 4 are repeated until each of the p rows of �KK is expressed as
a linear combination of the rows of �DDi ði ¼ 1; � � � ; r1 þ ::þ rp 4¼ rÞ, where r is
the observer order.

Finally, parameters T and L are determined by Step 3 of Algorithm
5.3, and parameter Ky is determined by (7.1a).

Without loss of generality, we assume qi ¼ i ði ¼ 1; . . . ; pÞ, then the
corresponding

KZ ¼

1 . . . 1 : 0 : . . . : 0

k2 : 1 . . . 1 : 0 : . . . : 0

k3 : 1 . . . 1 : . .
.

: 0

. .
.

kp : 1 . . . 1

2666666664

3777777775
r1 r2 r3 . . . rp

ð7:4bÞ

It is obvious that observer order is tried and increased one by one
starting from 0, in Algorithm 7.1. At any stage of this algorithm, if the
calculated ci ¼ 0, then the corresponding �DDi will be redeployed at the lower
part of matrix S to express other rows of �KK . Therefore it is also obvious that
all remaining freedom of (4.1) ðci; i ¼ 1; . . . ; rÞ is fully used.

Based on Conclusion 5.2 and the general assumption that

v15v25 � � �5vm; and that r15r25 � � �5rp ð7:5Þ

it is proven that [Tsui, 1986b] in Algorithm 7.1

ri4vi � 1; i ¼ 1; . . . ; p ð7:6aÞ

Thus

r ¼ ðr1 þ � � � þ rpÞ4ðv1 � 1Þ þ � � � þ ðvp � 1Þ ð7:6bÞ
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It is also proven that [Tsui, 1986b] in this algorithm

r4n�m ð7:7Þ

If parameter Ky is predetermined to be 0, then Eq. (7.1) becomes

K ¼ KZT ¼ KZ

c1

. .
.

cr

2664
3775

D1

..

.

Dr

2664
3775

m . . . m n

ð7:8Þ

Because the only difference between (7.8) and (7.1c) is that the former
has m additional columns, Algorithm 7.1 can be used directly to design this
type of minimal order observers, and (7.6a,b) and (7.7) can be replaced by

ri4vi; i ¼ 1; . . . ; p ð7:9aÞ
r ¼ ðr1 þ � � � þ rpÞ4v1 þ � � � þ vp ð7:9bÞ

and

r4n ð7:10Þ

respectively. Now we have the complete formula for the general lower and
upper bounds of orders of minimal order observers.

Table 7.1 shows that the order of a function observer which can
implement arbitrary state feedback control varies between its lower and
upper bounds. Unlike state observer orders, the actual value r of this order
depends on the actual values of K and T (Di’s) in either (7.8) (if Ky ¼ 0) or
(7.1) (if Ky=0).

Table 7.1 Lower and Upper Bounds for Orders of Minimal Order
Observers with Arbitrarily Given Poles

Observer type
Stateo observers

p ¼ n;K ¼ I

Function observers
(p4n;K arbitrary,
and v15 � � �5vm)

Ky ¼ 0 r ¼ n 14r4minfn; v1 þ � � � þ vpg
Ky=0 r ¼ n �m 04r4minfn �m; ðv1 � 1Þ þ � � � þ ðvp � 1Þg
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7.3 EXAMPLES AND SIGNIFICANCE OF THIS DESIGN [Tsui,
1998a]

Example 7.1

In the single-output case ðm ¼ 1Þ, the basis vector matrices Di of Algorithm
5.3 become row vectors tiði ¼ 1; . . . ; rÞ. Hence the corresponding (7.8) and
(7.1) become

K ¼ KZ

t1

..

.

tr

2664
3775 and �KK ¼ KZ

t1

..

.

tr

2664
3775 0

In�m

� �

n n�m

respectively. Thus the upper bound of function observer order of this case is
n and n�m, respectively. The lower bound remains 1 and 0 respectively,
because K cannot be 0 while �KK can.

The single output (SO) system is a special case of the multiple output
ðMO;m51Þ system in the sense of m ¼ 1. Notice that for such systems
n1 ¼ n, which makes the two terms of the upper bounds of r of Table 7.1 well
unified with each other when m ¼ 1. Example 7.1 shows that the observer
order bounds of this special case is well unified by the bounds of Table 7.1.

The single input (SI) system is also a special case of the multiple input
ðMI ; p51Þ system in the sense of p ¼ 1. In this special case K is a row
vector. The upper bound of r is n1 and n1 � 1 for the two types of observers
respectively because of (7.9a) and (7.6a), respectively. Notice that
n1 ¼ n if m ¼ 1. This makes the two terms of upper bounds of r unified
with each other for m ¼ p ¼ 1. As p increases from 1 [or the problem is
changed to generate more signals of KxðtÞ], the upper bound of r should
increase to n1 þ � � � þ np or ðn1 � 1Þ þ � � � þ ðnp � 1Þ but should not exceed
the most difficult state observer case n or n�m, respectively, for the two
types of observers. Because the observability indices satisfy n1 þ � � � þ nm ¼
n in Definition 5.1, the two terms of the upper bounds of r are also perfectly
unified as p is increased up to m. This unification is not achieved by other
existing general upper bounds of r such as pn1 or pðn1 � 1Þ [Chen, 1984]
because the ni’s may not be all the same.

For all SISO or MIMO cases, the lower bound of r is still 1 and 0 in
(7.8) and (7.1c) respectively, also because K of (7.8) cannot be 0 while �KK of
(7.1c) can. The first case implies that K is a linear combination of the rows of
D1 (see Part (c) of Example 7.3 and Exercise 7.1 or see Part (d) of Exercise
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7.1 for variation). The second case implies that the corresponding K is a
linear combination of the rows of matrix C.

To summarize, the lower and upper bounds of minimal order observer
order of Table 7.1 are perfectly and uniquely unified from SISO cases to the
MIMO cases.

The derivation of (7.8) to (7.10) for the strictly proper observers ðKy ¼
0Þ and the derivation of (7.1) and (7.5) to (7.7) for the proper type observers
ðKy=0Þ also show that the bounds of r of Table 7.1 are also perfectly unified
for these two types of observers.

For the state observer case when rank ðK ¼ IÞ ¼ maximum n, the
upper bounds of r should reach the ultimate high levels n and n�m for the
two types of observers, respectively. For K ¼ I , the matrix T of (7.8) and the
matrix ½T 0 : C0�0 of (7.1) should be square and nonsingular for the two types
of observers. Thus the number of rows of T (r) should be n and n�m for the
two types of observers, respectively. This is shown in Table 7.1. Thus
Table 7.1 also unifies the state observer case and function observer case
perfectly.

From the perfect unification of SISO and MIMO systems, the perfect
unification of strictly proper and proper type observers, and the perfect
unification of state and function observers, all bounds of observer order of
Table 7.1 should be the lowest possible. Any other bound that is lower than
any of these bounds of Table 7.1 cannot be general because it cannot unify
the special cases.

Although the upper bounds of minimal function observer order is not
as simple as that of the state observer order in Table 7.1, it often offers
substantial order reduction in practice. The lower bounds (1 and 0) of r are
the lowest possible and can be achieved by Algorithm 7.1 systematically
whenever it applies (see Example 7.3 and Exercise 7.1). However, it is the
upper bound that guarantees the significant order reduction from the state
observer orders.

Because the observability indices satisfy n1 þ � � � þ nm ¼ n in Definition
5.1, the upper bound of r of Table 7.1 is lower than the state observer order
whenever m > p. In addition, this upper bound can be significantly lower
than the state observer order in the situation that p5m5 n and that the ni’s
are evenly valued. This situation is indeed common in practice because it is
generally much easier to add measurements (or m) to a system than to add
controls (of p) to a system.

Example 7.2

In a circuit system with 100 capacitors, 10 current or voltage meters, and 2
controlled-current or voltage sources, n ¼ 100;m ¼ 10 and p ¼ 2. Given
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that v1 ¼ � � � ¼ v10 ¼ 10 ðv1 þ � � � þ v10 ¼ 100 ¼ nÞ, the function observer
order of Algorithm 7.1 will not exceed v1 þ v2 ¼ 20 and
ðv1 � 1Þ þ ðv2 � 1Þ ¼ 18, respectively (see Table 7.1 and Exercise 7.3).

This is significantly lower than the state observer order. In addition, it
is possible that the function observer order can be systematically designed to
be even lower than its upper bound of 20 or 18. The improvement from a
hundredth-order compensator to a twentieth-order one can hardly be
discounted, even by today’s computer numerical computation capability.

The development of computer numerical computation capability
should only be a challenge, instead of a reason of abandonment, for such
research tasks as minimal order observer design. For example, the
development of high-speed computers has now made possible the digital
realization of a twentieth-order compensator of Example 7.2. In other
words, the significance of Example 7.2 is feasible because of the computer
development. It should be noted that the result of Table 7.1 is analytical and
general. Hence the 100-to-20-order reduction of Example 7.2 can easily be a
1000-to-200-order reduction (assuming n ¼ 1000 and v1 ¼ � � � ¼ v10 ¼ 100;
other parameters of Example 7.2 remain unchanged).

In addition, the unsuccessful past attempts of developing a simple,
general, and systematic minimal order observer design algorithm should
only be a challenge, instead of a reason of abandonment, for developing
one.

Example 7.3 [Tsui, 1985]

Let the block-observable Hessenberg form system matrices be

A ¼

�1 0 0 : 1 0 0 : 0
2 0 1 : �1 1 0 : 0
0 3 0 : 0 1 1 : 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 : �3 0 1 : 1
0 0 0 : 0 1 0 : �1
1 0 0 : 0 0 �1 : 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 1 0 : 0 1 0 : �2

26666666666664

37777777777775
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and

C ¼
1 0 0 : 0 0 0 : 0
1 1 0 : 0 0 0 : 0

�1 0 1 : 0 0 0 : 0

24 35
From Definition 5.1, v1 ¼ 3; v2 ¼ 2; v3 ¼ 2. Let us design three minimal
order observers for the following three state feedbacks:

K1 ¼
3 �2 �2 : 1 2 1 : 0

2 0 �1 : 1 1 0 : 0

� �
K2 ¼

2 0 2 : 1 0 1 : 1

�3 �3 �2 : 1 2 0 : 0

� �

and

K3 ¼
0 2 3 : 0 0 0 : 0
1 �1 �1 : 1 1 0 : 0

� �

From Table 7.1, the observer order cannot exceed ðv1 � 1Þ þ ðv2 � 1Þ ¼ 3.
But let us first set the n�m ¼ 7� 3 ¼ 4 possible eigenvalues of matrix F as
fl1; l2; l3; l4g ¼ f�1; �2; �3; �1g.

In Step 1 of Algorithm 5.3 we compute the basis vector matrices
Di ði ¼ 1; 2; 3Þ from (5.10b) and D4 from (5.15d) (based on D1):

D1

..

.

D4

264
375 ¼

2 0 �1 : 1 0 0 : 1
1 �1 �1 : 1 1 0 : 0
0 0 0 : 0 0 1 : 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .

�1 �1 0 : 0 0 0 : 1
�1 �2 �1 : 1 1 0 : 0
1 1 �1 : 0 0 1 : 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .

�2 �2 1 : �1 0 0 1
�3 �3 �1 : 1 1 0 0
2 2 �2 : 0 0 1 : 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .
6 1 �2 : 2 0 0 : 1
3 0 �1 : 1 1 0 : 0

�1 �1 1 : 0 0 1 : 0

26666666666666666666666664

3777777777777777777777777
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We will apply Algorithm 7.1 to each of the three different K’s. For simplicity
of computation, we use elementary matrix operation (H) instead of
orthonormal matrix operation (H) to triangularize the matrix of this
example.

For K1

Step 1:

SH ¼

�DD1

..

.

�DD4

----

�KK1

266666664

377777775
1 0 0 �1

0 1 0 1

0 0 1 0

0 0 0 1

26664
37775

¼

1 0 : 0 0

1 1 : 0 0

. . . . . . . . . . . . . . .

0 0 1 0

. . . . . . . . . . . . . . .

0 0 0 1

1 1 0 0

0 0 1 0

�1 0 0 2

1 1 0 0

0 0 1 0

2 0 0 �1

1 1 0 0

0 0 1 0

1 2 1 1

1 1 : 0 0

26666666666666666666666666666666666664

37777777777777777777777777777777777775
/q1 ¼ 2; 11

ð7:11Þ

Step 2: r1 ¼ 1; c1 ¼ ½ 0 1 0 �; c1 �DD1H ¼ 11 ¼ ½ 1 1 0 0 �.
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Step 3:

S1H1 ¼

1 1 0 0

0 0 0 1

1 1 0 0

0 0 1 0

�1 0 0 2

1 1 0 0

0 0 1 0

:

1 2 1 1

1 1 0 0

26666666666666666664

37777777777777777775

1 �1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

26664
37775

¼

1 0 0 0

0 0 0 1

1 0 0 0

0 0 1 0

�1 1 0 2

. . . . . . . . . . . . . . .

:

:

1 1 1 1

x x x x

26666666666666666664

37777777777777777775/12

Step 4: r2 ¼ 2; c2 ¼ ½�1 0 1 �; c3 ¼ ½ 1 0 0 �, and k2 ¼ 2, so that

12 ¼ k2ðc1 �DD1HH1Þ þ c2ð �DD2HH1Þ þ c3ð �DD3HH1Þ

Finally, the observer for K1 is ðr ¼ r1 þ r2 ¼ 3Þ, and

F ¼
�1 0 0
0 �2 0
0 0 �3

24 35
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and

T ¼
c1D1

c2D2

c3D3

24 35 ¼
1 �1 �1 1 1 0 0
2 2 �1 0 0 1 �1

�2 �2 1 �1 0 0 1

24 35
From (7.4a),

KZ ¼ k2 : 1 1
1 : 0 0

� �
¼ 2 : 1 1

1 : 0 0

� �

From (5.10a) and (7.1a),

L ¼ ðTA� FTÞ I3
0

� �
C�1

1 ¼
0 �4 �2
7 0 0

�5 �2 1

24 35
and

Ky ¼ ðK � KZTÞ I3
0

� �
C�1

1 ¼ 1 0 0
0 1 0

� �

For K2

Step 1: The result is similar to that of K1 in (7.11), except the
part

�KK2H ¼ 1 0 1 0
1 2 0 1

� �
/q1 ¼ 1; 11

Step 2: r1 ¼ 1; c1 ¼ ½ 1 0 1 � so that c1ð �DD1HÞ ¼ 11.
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Step 3:

S1H1 ¼

1 0 1 0

0 0 0 1

1 1 0 0

0 0 1 0

:

:

1 0 1 0

1 2 0 1

266666666666664

377777777777775

1 0 �1 0

0 1 0 0

0 0 1 0

0 0 0 1

26664
37775

¼

1 0 0 0

0 0 0 1

1 1 �1 0

0 0 1 0

. . . . . . . . . . . .

:

x x x x

1 2 �1 1

266666666666664

377777777777775
/12

Step 4: r2 ¼ 1; c2 ¼ ½ 1 2 1 �, and k2 ¼ �1 such that

12 ¼ k2ðc1 �DD1HH1Þ þ c2ð �DD2HH1Þ

Finally, the minimal order observer for K2 is ðr ¼ r1 þ r2 ¼ 2Þ, and

F ¼
�1 0

0 �2

� �
T ¼

c1D1

c2D2

� �
¼

2 0 �1 1 0 1 1

�2 �4 �3 2 2 1 1

� �
KZ ¼

1 : 0

k2 : 1

� �
¼

1 : 0

�1 : 1

� �
r1 r2

L ¼ ðTA� FTÞ
I3

0

� �
C�1

1 ¼
2 �2 �1

�3 �16 �10

� �
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and

Ky ¼ ðK � KZTÞ
I3
0

� �
C�1

1 ¼ 1 0 1
0 1 0

� �

For K3

Because the first row of K3 is already a linear combination of rows of C, we
let r1 ¼ 0 and let the linear combination coefficients be k1. Then, because the
second row of �KK3 equals the second row of �KK1, we have the following
minimal order observer for K3 : ðr ¼ r1 þ r2 ¼ 0þ ðr1 for K1Þ ¼ 1Þ

F ¼ �1;T ¼ the first r1 ð¼ 1Þ rows of T for K1

¼ ½ 1 �1 �1 1 1 0 0 �

KZ ¼
0

1

� �
Ky ¼

1 2 3

0 0 0

� �
¼

k1

0 0 0

� �

L ¼ ½ 0 �4 �2 �

To summarize, the order of the three minimal order observers is 3, 2, and 1,
respectively, which is systematically and generally determined by Algorithm
7.1. All three orders do not exceed ðv1 � 1Þ þ ðv2 � 1Þ ¼ 3, which is the
upper bound of Table 7.1.

The minimal order observer design problem has been studied using
classical control methods also. The most recent result can be found in Chen
[1984] and Zhang [1990]. Although for years the upper bound of minimal
order observer order from these methods has been minfn�m; pðv1 � 1Þg
[Chen, 1984], (see Exercise 7.4), the classical control methods differ much
from Algorithm 7.1 in determining systematically and generally the lowest
possible observer order (see Example 7.3 and the argument between (7.1c)
and Algorithm 7.1). The difference appears at how systematically the
equation [such as (7.1c)] is being solved, at how the observer dynamic part is
decoupled, and at how fully the design freedom (such as the free parameters
ci) is being used. It seems that the classical control methods cannot match
Algorithm 7.1 in the above three technical aspects.

The foremost theoretical significance of Algorithm 7.1 is the
simplification of the design problem into a true set of linear equations
(7.1c) or (7.8) with fully usable freedom. The general and lowest possible
lower and upper bounds of minimal order observer order (Table 7.1) are
also derived simply based on this set of linear equations. Thus it can be
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claimed with confidence that this set of linear equations is already the
simplest possible theoretical and general form of the minimal order observer
design problem [Tsui, 1993a]. From Example 4.3 and Algorithm 7.1, this
development is enabled solely by the development on the decoupled solution
of (4.1) (Algorithm 5.3). Other state space minimal order observer design
methods cannot reach this simple form because the result of Algorithm 5.3
has not been used [Van Dooren, 1984; Fowell et al., 1986].

The actual solving of this set of linear equations is technical.
Although Algorithm 7.1 is general and systematic, guarantees the upper
bound of observer order of Table 7.1 and tries the observer order one
by one (starting from 0), it still has room for improvement. This
algorithm operates on the Di matrices in the sequence of i ¼ 1; 2; . . . ; but
does not try different sequences among these matrices, which may offer
additional observer order reduction. For example, if operating in the
sequence of ðD1; D2; D3Þ, Algorithm 7.1 can detect that K is linearly
dependent on the rows of D1 and D2 ðr ¼ 2Þ, but it is still possible that
operating on a different sequence of ðD3; D2; D1Þ the Algorithm 7.1 can
detect that K is linearly dependent on the rows of D3 only ðr ¼ 1Þ (see
Exercise 7.1, Part (d)).

In the literature, there are other reports of minimizing function
observer order by observer pole selection [Fortmann and Williamson, 1972;
Whistle, 1985]. However, these design methods are much more complicated,
while the additional observer order reduction offered by these methods is
not generally significant.

Finally, it should be emphasized again that the minimal order observer
design (Algorithm 7.1) uses up completely the remaining design freedom of
(4.1) (or of the observer) and therefore cannot take care of the robustness of
the corresponding observer feedback system [such as (4.3)]. Hence this
design is useful only for the situation in which the plant system model and
measurements are accurate—and continue to be accurate—and that
disturbance and failure are relatively free. In other words, the minimal
order observer should be used when only performance (but not robustness)
is required.

Although minimal order observer and dynamic output feedback
compensator (capable of implementing state feedback control) differ from
each other in design priority, both their designs are part of Step 2 of
Algorithm 5.3 and both are in the similar form of sets of linear equations.
Also, they both are successful and actual attempts of the basic observer
design concept—implementing state feedback control directly without
explicit information of system states. In addition, both order reduction
(which is part of performance) and robustness are important system
properties, even though the emphasis of this book is more on robustness
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properties. Therefore, both results are useful and both may be used in some
situations.

EXERCISES

7.1 Repeat Example 7.3 for a modified system of Example 6.1:

Let C ¼
1 0 0 : 0 0 0 0

2 1 0 : 0 0 0 0

3 4 1 : 0 0 0 0

264
375

and let matrices Di ði ¼ 1; . . . ; 4Þ be the same as that of Example 6.1.
The system has parameters n ¼ 7;m ¼ 3; p ¼ 2; v1 ¼ 3, and
v2 ¼ v3 ¼ 2.

(a) K ¼
1 �1 0 : 1 2 3 1

0 0 1 : �4 3 �2 0

� �

Answer : r ¼ 3;T ¼
½ 3 2 3�D1

½�2 0 0�D2

½ 4 3 �2�D3

264
375

¼
3 �2 �3 : �3 2 3 3

�8 0 0 : 4 0 0 �2

36 �9 6 : �12 3 �2 4

264
375

KZ ¼
1 1 : 0

0 2 : 1

� �
Ky ¼

19 �11 3

�63 29 �5

� �

(b) K ¼
1 0 0 : 1 2 3 1

0 �1 1 : 2 �4 �6 �4

� �
Answer : r ¼ 2;T ¼

½ 3 2 3�D1

½ �2 0 0�D2

� �
¼

3 �2 �3 : �3 2 3 3

�8 0 0 : 4 0 0 �2

� �
KZ ¼

1 1

�2 �1

� �
Ky ¼

17 �10 3

�17 15 �5

� �
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(c) K ¼
11 7 1 : 0 0 0 0

�6 2 �4 : 6 �2 4 �6

� �

Answer : r ¼ 1;F ¼ �1;T ¼ ½ 3 1 �2 �D1

¼ ½ 3 �1 2 : �3 1 �2 3 �

KZ ¼
0

�2

� �
Ky ¼

2 3 1

0 0 0

� �

(d) K ¼
3 2 �3 : �1 �2=3 1 1=3

10 6 1 : 0 0 0 0

� �

Answer : r ¼ 1;F ¼ �3;T ¼ ½ 1 �2 3 �D3

¼ ½ 9 6 �9 : �3 �2 3 1 �

KZ ¼
1=3

0

� �
Ky ¼

0 0 0

3 2 1

� �
7.2 Let a system and its state feedback gain be given as

ðA;B;C;KÞ ¼
0 0 5
1 0 �5
0 1 �2

24 35; 1
0
0

24 35; ½ 0 0 1 �; ½ 0 �5 3 �
8

0@ 1A
Design a minimal order observer according to Algorithm 7.1.

(a) Let Ky ¼ 0 and observer poles ¼ f�5:25;�2:44;�4g.
Answer: r ¼ 2 < n.

(b) Let Ky 6¼ 0, and observer poles ¼ f�5=3;�10=3g.
Answer: r ¼ 1 < n�m.

7.3 In Example 7.2, let n ¼ 1000;m ¼ 100; p ¼ 2; v1 ¼ � � � ¼ v100 ¼ 10, and
Ky ¼ 0. What are the state observer order and the upper bound of
minimal observer order of Table 7.1?
Answer: n ¼ 1000 and v1 þ v2 ¼ 20.

7.4 Let n ¼ 21;m ¼ 5; p ¼ 2; v1 ¼ 9; v2 ¼ � � � ¼ v5 ¼ 3, and Ky 6¼ 0.
What are the state observer order, the upper bound pðv1 � 1Þ of the
existing minimal observer order, and the upper bound of our minimal
observer order of Table 7.1?
Answer: n�m ¼ 16; pðv1 � 1Þ ¼ 16; v1 þ v2 � 2 ¼ 10.
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8

Design of Feedback Control—
Eigenstructure Assignment

The new design approach of this book is divided into two major steps. The
first concerns the dynamic part of the observer/compensator and is covered
in Chap. 6 (for robustness realization). The second step, which is covered by
Chaps 8 and 9, deals with the design of the output part of the compensator,
or the design of the generalized state feedback control KCxðtÞ with a given
C. This design also fully determines the feedback system loop transfer
function because (4.3) is already guaranteed.

Among the existing design results of this control, the eigenvalue and
eigenvector assignment (called ‘‘eigenstructure assignment’’) and linear
quadratic optimal control are perhaps most commonly known, and are
capable of considering effectively both performance and robustness. In
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particular, according to the analysis of Chap. 2, the eigenvalues and
eigenvectors can determine system performance and robustness far more
directly and explicitly than other indicators. Hence their assignment should
improve feedback system performance and robustness distinctly effectively.

In this book, eigenstructure assignment design methods and linear
quadratic optimal control design methods are introduced in Chaps 8 and 9,
respectively.

The design of the generalized state feedback control KCxðtÞ is based
on the single overall feedback system matrix A� BKC. Therefore if the
design of Chap. 6 is based mainly on the understanding of feedback systems
of Chaps 3 and 4, then the design of Chaps 8 and 9 is based mainly on the
analysis of the single overall system of Chap. 2.

According to Table 6.2, the generalized state feedback control KCxðtÞ
unifies the arbitrary state feedback control (or state feedback control) KxðtÞ
(if rank ðCÞ ¼ n) and static output feedback control (if rank ðC ¼ CÞ ¼ m).
Both Chaps 8 and 9 present the design methods in these two categories. The
arbitrary state feedback control, which is a special case of the generalized
state feedback control in the sense of C ¼ I , is presented first.

8.1 SELECTION AND PLACEMENT OF FEEDBACK SYSTEM
POLES

8.1.1 Eigenvalue (Pole) Selection

Although system poles most directly determine system performance, there
are no general, explicit and optimal rules for feedback system pole selection.
Furthermore, there is no real optimal pole selection without trial and error.
This is because plant systems are usually very different and complex, and
also because the performance and robustness design requirements are
contradictory to each other.

Nonetheless, there are still some basic and general understandings
about the relationship between the system poles and the system performance
and robustness. The following six general rules of pole selection are guided
by these basic understandings (see Truxal, 1955 and Conclusion 2.2).

(a) The more negative the real part of the poles, the faster the speed
with which the system reaches its steady state.

(b) In regulator problems, it is often required that the zero frequency
response of the control system Tðs ¼ 0Þ be a finite constant. For
example, if the unit-step response of a single-input and single-
output system yðtÞ is required to approach 1 at steady state
ðt??Þ, then yðt??Þ ¼ sYðs?0Þ ¼ sTðs?0Þ=s ¼ Tðs?0Þ ¼ 1.
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This implies that Nðs ¼ 0Þ ¼ Dðs ¼ 0Þ in TðsÞ ¼ NðsÞ=DðsÞ. It is
well known that Nðs ¼ 0Þ equals the product of zeros of TðsÞ and
is invariant under state feedback control [Patel, 1978]. Therefore
the relation Nðs ¼ 0Þ ¼ Dðs ¼ 0Þ imposes a constraint on
Dðs ¼ 0Þ, which equals the product of the poles of feedback
system TðsÞ.

(c) From the results of root locus, the further away the feedback
system poles from the loop transfer function poles, the higher the
loop gain (or feedback control gain) required to place these
feedback system poles. The severe disadvantages of high feedback
control gain are listed in Subsection 3.1.2.

If rule (a) is concerned mainly with system performance,
then rules (b) and (c) are concerned mainly with robustness, and
are constraints on rule (a).

(d) If the eigenvalues of a matrix differ too much in magnitude, then
the difference between the largest and the smallest singular values
of that matrix will also differ too much. This implies the bad
condition and the bad robustness of the eigenvalues, of that
matrix.

(e) Multiple eigenvalues can cause defective eigenvectors (5.15d),
which are very sensitive to matrix parameter variation (see Golub
and Wilkinson, 1976b) and which generally result in rough
responses (see Example 2.1 and Fig. 2.1). Therefore multiple
poles, even clustered poles, should generally be avoided.

(f) For some optimal control systems in the sense of minimal
‘‘Integral of time multiplied by absolute error (ITAE)’’ [Graham
and Lathrop, 1953]:

J ¼
Z ?

0

½tjyðtÞ � 1j�dt

or in the sense of minimal ‘‘Integral of quadratic error (ISE)’’
[Chang, 1961]:

J ¼
Z ?

0

½qðyðtÞ � 1Þ2 þ ruðtÞ2�dt; q??

the feedback system poles are required to have similar magnitude
and evenly distributed phase angles between þ90� and �90�. This
result conforms with rules (d) and (e).
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These six rules are concerned more with the effectiveness and
limitations of practical analog control systems. In contrast, the selection
of feedback compensator poles (see the beginning of Sec. 5.2) are more
specifically and explicitly guided. The feedback compensators are usually
digital and can therefore be made ideal and precise, while the analog systems
cannot be made ideal and precise.

To summarize, the pole selection rules are neither exhaustive nor
generally optimal. This should be a true and reasonable reflection of the
reality of practical engineering systems, and should impose a challenge to
control engineers.

8.1.2 Eigenvalue Assignment by State Feedback Control

The eigenvalue assignment design methods are presented in this subsection
and in Subsection 8.1.3, for arbitrary state feedback control KxðtÞ and
generalized state feedback control KCxðtÞ, respectively. These design
methods have the distinct property that the corresponding eigenvectors
are expressed in terms of their corresponding basis vectors, and can
therefore be assigned by really systematic and effective numerical methods.
These eigenvector assignment design methods will be presented in Sec. 8.2.

Let L be the Jordan form matrix that is formed by the selected
eigenvalues of Subsection 8.1.1. Then the eigenstructure assignment
problem can be formulated as (1.10):

ðA� BKÞV ¼ VL ð8:1aÞ

or

AV � VL ¼ BKbðKb¼ KVÞ ð8:1bÞ

Let matrix F of Eq. (4.1) be the same Jordan form matrix (in transpose) as
L, and be set to have dimension n, then this equation

TA� FT ¼ LC

becomes the dual of (8.1b). In other words, we can take the transpose of
both sides of (8.1b) and then consider the resulting A0;B0;V 0, and K b 0 as the
matrices A, C, T, and L of Eq. (4.1), respectively.

Therefore, we can use the dual version of Algorithm 5.3 to compute
directly the solution ðV ;KbÞ of (8.1b). Incidentally, Algorithm 5.3 and its
dual version were published formally in the same year in Tsui [1985] and
Kautsky et al. [1985], respectively.
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The only difference between these two design computations is that
after Kb is computed from (8.1b), it must be adjusted to K ¼ KbV�1

because only matrix K corresponds to the original feedback dynamic matrix
A� BK . This adjustment is unnecessary in observer design because the
observer dynamic matrix in (3.16) is matrix F instead of matrix A� LC.

The dual version of Algorithm 5.3 is introduced in the following with
some simplifications.

Let the Li be an ni-dimensional Jordan block of L.
Let

Vi 4¼ ½vi1j . . . jvini� and Ki 4¼ ½ki1j . . . jkini�

be n6ni and p6ni dimensional, and be the part of matrices V and Kb
corresponding to Li in (8.1b), respectively.

Then (8.1b) can be partitioned as

AVi � ViLi ¼ BKi; i ¼ 1; . . . ; r ð8:2Þ

where r is the number of Jordan blocks in L and n1 þ � � � þ nr ¼ n.
Using the Kronecker product operator 6, Eq. (8.2) can be rewritten

as

½Ini6A� Li6I j � Ini6B�wi ¼ 0; i ¼ 1; . . . ; r ð8:3aÞ

where

wi ¼ ½v0i1 : . . . : v0ini: k0i1: . . . : k0ini�
0 ð8:3bÞ

For example, when ni ¼ 1, (8.3) becomes

½A� liI : �B� vi
ki

� �
¼ 0 ð8:4Þ

Because the matrix of (8.3a) has dimension nin6niðnþ pÞ [see (5.13c)], and
because controllability criterion implies that all rows of this matrix are
linearly independent (see Definition 1.2), the vector wi of (8.3) has ni6p
basis vectors and can be set as an arbitrary linear combination of these basis
vectors. Naturally, the determination of this linear combination constitutes
the assignment of eigenvectors Vi ¼ ½vi1: . . . : vini�.

For example, when ni ¼ 1, the matrix of (8.3) or (8.4) has dimension
n6ðnþ pÞ. Hence eigenvector vi of (8.4) can be an arbitrary linear
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combination of its p corresponding basis vectors dij ðj ¼ 1; . . . ; pÞ which also
satisfy (8.4):

vi ¼ ½di1: . . . : dip�ci 4¼ Dici ð8:5Þ

where ci is a p-dimensional free column vector.
The vector ki of (8.4) will be the same linear combination (coefficient

vector is ci) of its own corresponding basis vectors.
If p ¼ 1 (single-input case) and ni ¼ 1, then the matrix of (8.3) or (8.4)

has dimension n6ðnþ 1Þ. Hence the solution vi and ki is unique (ci is a
scalar). This implies that in single-input case, there is no eigenvector
assignment freedom, and the eigenvalues alone can uniquely determine the
feedback system dynamic matrix.

Equation (8.5) is a uniquely explicit and uniquely decoupled
formulation of eigenvector assignment. Only based on this formulation,
the general and systematic design algorithms for robust eigenvector
assignment are developed in Kautsky et al. [1985]. These methods will be
introduced in Sec. 8.2.

Equations (8.3) and (8.4) are the formulas for computing the basis
vectors of eigenvector matrix V. Like Step 1 of Algorithm 5.3, this
computation can be carried out by direct back substitution if based on the
block-controllable Hessenberg form

½A : B� ¼

A11 A12 . . . . . . A1m : B1

B2 A22 . . . . . . : : 0
0 B3 . . . . . . : : 0

..

. . .
. . .

.
: : ..

.

0 . . . 0 Bm Amm : 0

2666664

3777775 ð8:6Þ

where matrix blocks Bj ðj ¼ 1; . . . ; mÞ are the upper echelon-form matrices,
and m is the largest controllability index of the system ðA; BÞ.

As the dual of the observability index of Definition 5.1, there are p
controllability indices mj ðj ¼ 1; . . . ; pÞ of system ðA;BÞ and

m1 þ m2 þ � � � þ mp ¼ n ð8:7Þ

In addition, each basis vector of (8.5) dij ði ¼ 1; . . . ; n; j ¼ 1; . . . ; pÞ can
be computed corresponding to one of the p inputs which is indicated by j.

If the dij vectors are computed this way, then from the dual of
Conclusion 5.2, for a fixed value of j, any set of mj of the n dij vectors are
linearly independent of each other (see Example 8.6 and Theorem 8.1). This
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analytical property is very useful in the analytical rules of eigenvector
assignment (Subsection 8.2.2).

If matrix V is computed based on a similarity transformation
ðHAH 0; HBÞ instead of the original ðA; BÞ, [one example of ðHAH 0; HBÞ
is the block-controllable Hessenberg form (8.6)], then the corresponding
(8.1b) becomes

HAH 0V � VL ¼ HBK^ ð8:8Þ

A comparison of (8.1b) and (8.8) indicates that the matrix V of (8.8) should
be adjusted to V ¼ H 0V in order to correspond to the original system matrix
ðA; BÞ.

As stated following (8.1b), after this adjustment of V, it will then be
used to adjust the feedback gain matrix K ¼ K bV�1.

8.1.3 Eigenvalue Assignment by Generalized State
Feedback Control

The generalized state feedback control gain is KC, where K is free and rank
ðCÞ4¼ q4n (see Table 6.2). The case for q ¼ n is equivalent of the state
feedback control, and is covered in the previous subsection. This subsection
deals with the case for q < n, which implies additional restrictions K ¼ KC
to the corresponding state feedback gain K, and whose design can therefore
be much more difficult than the case for q ¼ n.

Let L be a Jordan form matrix which contains the desired eigenvalues
of matrix A� BKC. Then from (1.10), the eigenvalue assignment problem
can be expressed in the following dual equations:

TðA� BKCÞ ¼ LT ð8:9aÞ

and

ðA� BKCÞV ¼ VL ð8:9bÞ

where T and VðTV ¼ IÞ are the left and right eigenvector matrices of A�
BKC corresponding to L, respectively.

This problem has a remarkable property that is not shared by either
state feedback design problem or the observer design problem—duality (see
Sec. 1.3). Unlike in problem (8.9), in those two problems, the given and dual
system matrices B and C do not appear in the problem simultaneously.

The following algorithm [Tsui, 1999a] uses two steps (Steps 1 and 2) to
satisfy (8.9a) and then (8.9b). One of the unique features of this algorithm,
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and this feature is also shared by the method of Subsection 8.1.2, is that it
allows the corresponding eigenvector assignment to be in the form of
assigning the linear combination coefficients of the corresponding basis
vectors. See the beginning of Subsection 8.1.2.

Algorithm 8.1

Eigenstructure assignment by generalized state feedback control [Tsui,
1999a].

The algorithm is aimed at partially satisfying (8.9a) and then (8.9b)
(and TV ¼ I). Because (8.9a) and (8.9b) are redundant, this partial
satisfaction of (8.9a) and (8.9b) also implies the complete satisfaction of
(8.9a) and (8.9b), as will be evident at Step 2 of the algorithm.

Step 0: Partition the matrix L of (8.9) into

L ¼ diagfLn�q;Lqg

where the eigenvalues in either Ln�q or Lq must be either real
or complex conjugate, and the dimensions of these two
matrices are n� q and q, respectively.

Step 1: Compute the ðn� qÞ6n-dimensional solution matrix Tn�q of
the equation

Tn�qA� Ln�qTn�q ¼ LC ð8:10aÞ
and

rank ½T 0
n�q : C

0�0 ¼ n ð8:10bÞ

Because (8.10a) is the same as (4.1) when the dimension is n� q, and
because the matrix F of (4.1) is also set in Jordan form in Algorithm 5.3,
Step 1 can be the same as Steps 1 and 2 of Algorithm 5.3.

Because the above two equations are the necessary and sufficient
conditions of the well-known state observer (See Sec. 4.1), the solution Tn�q

of these two equations always exists for observable systems, and is
nonunique if q > 1.

Because (8.9a), (8.10a) and the L of Step 0 show that Tn�q would be
the left eigenvector matrix of the feedback system dynamic matrix
corresponding to Ln�q, it is desirable to make its rows as linearly
independent as possible (see Sec. 2.2).
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Step 2 of Algorithm 5.3 can use the numerical algorithms of
Subsection 8.2.1 to make the rows of matrix ½T 0

n�q : C
0�0 as linearly

independent as possible.
If q ¼ n (state feedback case), then Step 1 is unnecessary and Tn�q ¼ 0.

Step 2: Compute the n6q dimensional and full-column rank
solution matrix Vq of

AVq � VqLq ¼ BKq ð8:11aÞ
and

Tn�qVq ¼ 0 ð8:11bÞ

If the i-th eigenvalue in matrix Lq is a distinct and real number li, then
this equation pair is equivalent of

A� liI �B
Tn�q 0

� �
vi
ki

� �
¼ 0 ð8:12Þ

where vi and ki are the i-th column of matrices Vq and Kq respectively
corresponding to li.

The equation pair (8.11) together with (8.10) obviously imply that (8.9)
is fully determined and satisfied in the sense that L ¼ diagfLn�q;Lqg, the
first n� q left eigenvectors of T will be formed by Tn�q, and the last q right
eigenvectors of V will be formed by Vq, when K of (8.9) is computed from
Kq of (8.11a) by an appropriate similarity transformation (as will be done in
Step 3 of this algorithm).

Because Step 1 of this algorithm is the same as state observer design,
Step 2 is the only nontrivial step of Algorithm 8.1.

The similarity between (8.2) and (8.11a) indicates that the solution of
(8.11a) can be computed generally using (8.3), while the remaining freedom
of (8.11a) can be used to satisfy the set of linear equation (8.11b).

It is very interesting to notice that the equation pair (8.11)
corresponding to a different system ðA; B; C4¼ Tn�qÞ, is exactly dual to the
matrix equation pair (4.1) and (4.3) of order q and corresponding to system
ðA; B; CÞ. This duality is more clearly revealed by comparing (8.12) with
(6.7). In other words, the corresponding dimension m of (6.7) is now n� q
for (8.12), and the corresponding condition m > p of (6.7) (see Conclusion
6.1) is now p > new m ð¼ n� qÞ for (8.12). This new condition is equivalent
of qþ p > n [Tsui, 2000].

The solution of (4.1) is presented in Algorithm 5.3 (Chap. 5) and the
corresponding solution of (4.3) is presented in Algorithm 6.1 (Secs 6.1 and
6.2). From Conclusion 6.1 of Sec. 6.2 and the dimension of (8.11) at the
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previous paragraph, exact solution of (8.11) exists if and only if either
qþ p > n [Kimura, 1975] or the eigenvalues of Lq are the transmission zeros
of system ðA;B;C4¼ Tn�qÞ.

If pþ q > nþ 1, then the solution of (8.11) is not unique. This
freedom can be considered as the freedom of assigning the right eigenvectors
of Vq of (8.11a), and is expressed in the form of linear combination of the
basis vectors as in (8.5).

This result is compatible to its special case—state feedback case where
q ¼ n. It is clear that if q ¼ n, then qþ p > n is guaranteed (arbitrary
eigenvalue assignment is guaranteed), and then p > 1 guarantees
qþ p > nþ 1 (eigenvector assignment of Vq is possible).

Step 3: The comparison between (8.9b) and (8.11a) shows that

K ¼ KqðCVqÞ�1 ð8:13Þ

The inverse of matrix CVq is guaranteed because ½T 0
n�qC

0�0 is
full-row rank (see Step 1) and because of (8.11b) ðTn�qVq ¼ 0Þ.

From the end of Step 2, there is freedom of assigning matrix Vq if
qþ p > nþ 1. Because Tn�q and Vq will be formed respectively by the first
n� q left eigenvectors of T and the last q right eigenvectors of V of the
feedback system dynamic matrix of (8.9), and because matrix ½T 0

n�q; C�0 is
full-row rank, to make the actual eigenvector matrices T and V as well
conditioned as possible so that the eigenvalues can be as robust as possible
(Sec. 2.2), Vq may be assigned such that matrix CVq is as well conditioned as
possible. The most systematic and effective numerical algorithm for this
assignment is presented in Subsection 8.2.1. (such as Algorithm 8.3).

Algorithm 8.1 is uniquely simple, analytical, and reveal the duality
property of the original problem (8.9) in Steps 1 and 2. Hence its dual
version is directly available as follows:

Step 0 : Divide the n eigenvalues into L ¼ diagfLn�p;Lpg ð8:14Þ
Step 1 : Find Vn�p such that AVn�p � Vn�p Ln�p ¼ BKn�p and

rank½B : Vn�p� ¼ n ð8:15Þ
Step 2 : Find Tp such that TpA� LpTp ¼ LpC and TpVn�p ¼ 0 ð8:16Þ
Step 3 : K ¼ ðTpBÞ�1Lp ð8:17Þ

Because parameters p and q can be different from each other, the two dual
versions of Algorithm 8.1 can complement each other.
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For example, if pþ q ¼ nþ 1, then neither q nor p can be reduced to
make an even q and p from the originally odd q and p (or neither the rows of
matrix C nor the columns of matrix B can be ignored) for arbitrary
eigenvalue assignment. Now if all assigned eigenvalues are in complex
conjugate pairs and q is odd (a very common situation), then Step 0 of
Algorithm 8.1 cannot be implemented. This difficulty has been studied for
years since [Kim, 1975] without simple solution [Fletcher and Magni, 1987;
Magni, 1987; Rosenthal and Wang, 1992].

However, because in this very situation both n� p and p are even, the
above dual version of Algorithm 8.1 can be applied to solve this problem
without a hitch.

Example 8.1

LetðA;B;CÞ ¼
�4 0 �2
0 0 1
1 �1 �2

24 35
;

4 2
0 �2
0 1

24 35
;

0 1 0
0 0 1

� �0@ 1A
Let the assigned eigenvalues be �1;�2, and �3. Compute matrix K so that
matrix A� BKC has these eigenvalues, using Algorithm 8.1.

Step 0: We arbitrarily select Ln�q ¼ �3 and Lq ¼ diagf�2;�1g

Step 1: The q ð¼ 2Þ basis vectors of Tn�q are D1 ¼
1 0 1
0 1 0

� �
Any linear combination of D1 would make the first column of (4.1)

equal 0 for all L. The free matrix L of (4.1) can be used to satisfy the
remaining two columns of (4.1) from any Tn�q, but will not be used in the
subsequent steps of this algorithm. We arbitrarily select c1 ¼ ½ 1 0 � so that
Tn�q ¼ c1D1 ¼ ½ 1 0 1 � is linearly independent of the rows of matrix C.

Step 2: Because pþ q ¼ nþ 1, the solution of Step 2 is unique and
can be computed based on Eq. (8.12). In other words, Eq.
(8.12) is used twice for the two eigenvalues �2 and �1 and
their corresponding columns of matrices Vq and Kq. The
solution is

Vq ¼
0 1

�1 3
0 �1

24 35 and Kq ¼
�1=2 1=4
1 �1

� �

It can be verified that both (8.11a) and (8.11b) are satisfied.

Copyright  2004 by Marcel Dekker, Inc. All Rights Reserved.



www.manaraa.com

Step 3: From Eq. (8.13), K ¼ KqðCVqÞ�1 ¼ 1=2 5=4
�1 �2

The corresponding matrix A� BKyC has the desired eigenvalues.

Example 8.2 (the dual version of Algorithm 8.1 on the same problem)

Step 0: According to (8.14), we similarly select Ln�p ¼ �3 and
Lp ¼ diagf�2;�1g

Step 1: The p ð¼ 2Þ basis (column) vectors of solution ½V 0
n�p : K

0
n�p�

0

of the first equation of (8.15) are

D1 ¼

4 �3
1 0

�3 2
. . . . . .

�1=2 �1=4
0 1

26666664

37777775
Any linear combination of D1 would satisfy the first equation
of (8.15). We arbitrarily select c1 ¼ ½ 1 1 �0 so that Vn�p ¼ D1

(the first three rows) c1 ¼ ½ 1 1 �1 �0 so that the second
equation of (8.15) is also satisfied. Matrix Kn�p is not needed
in the subsequent steps of the algorithm.

Step 2: Because pþ q ¼ nþ 1, the solution of (8.16) is unique and
can be computed by using Eq. (6.7) [which is equivalent of
(8.16) if the matrix B of (6.7) is replaced by matrix Vn�p]
twice. The solution is:

Tp ¼
1 1 2
1 2 3

� �
and Lp ¼

0 1
1 3

� �

It can be verified that (8.16) is satisfied.

Step 3: K ¼ ðTpBÞ�1Lp ¼
1=2 5=4
�1 �2

� �
according to (8.17)

which is the same as the K of the basic algorithm version of Example 8.1.
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8.1.4 Adjustment of Generalized State Feedback Control
Design Priority and Procedure

Algorithm 8.1 assigns the n arbitrarily and previously chosen poles to the
system exactly if qþ p > n. The first group of n� q eigenvalues can always
be assigned exactly and their corresponding n� q left eigenvectors Tn�q

always have q basis vectors for each. These eigenvectors are proposed to be
assigned so that the rows of matrix ½T 0

n�qC
0�0 are as linearly independent as

possible. The second group of q eigenvalues can be assigned exactly if and
only if either qþ p > n or these eigenvalues are the transmission zeros of
system ðA; B; Tn�qÞ. If qþ p > nþ 1, then there are qþ p� n basis vectors
for each of the corresponding q right eigenvectors Vq, and these eigenvectors
are proposed to be assigned so that matrix CVq is as well conditioned as
possible.

However in practice, many different situations and different require-
ments may arise that demand the above design procedure be adjusted
accordingly.

First, if qþ p4n yet q6p > n, then Algorithm 8.1 may not yield exact
solution, yet arbitrarily given poles can be exactly assigned generically
[Wang, 1996], although the design procedure of Wang [1996] is very
complicated.

Second, even if q6p4n and exact assignment of arbitrarily given
poles is not even generically possible [Wang, 1996], it is desirable and it
should be in many cases possible based on Algorithm 8.1 to assign the
second group of q poles approximately to desirable areas. This is achieved
while the first group of n� q poles are still exactly assigned by Algorithm
8.1. This level of pole assignment should be good enough in practice.

Third, because the two groups of eigenvalue/vectors are treated very
differently in Algorithm 8.1—the first group has much higher priority, it is
useful to try different groupings among the assigned eigenvalues and their
eigenvectors.

Fourth, unlike the static output feedback case where all m rows of
matrix Cð4¼CÞ are corresponding to direct system output measurements,
q�m rows among the q rows of our matrix C are corresponding to the
converged estimates of the linear combinations of system states. Therefore
these q�m rows of C can not be treated indifferently from the rest m rows
(of matrix C) of matrix C.

Fifth and finally, in some practical situations it is more desirable to
minimize the system zero-input response with some prior knowledge of
system initial state, than to make the eigenvectors as linearly independent as
possible.
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Each of these five different considerations is addressed by each of
the following proposed adjustments of Algorithm 8.1. These adjustments
are possible because Algorithm 8.1 is uniquely simple, analytical, and
explicit.

Adjustment 1: Instead of designing Tn�q in Step 1 for the maximized
angles between the rows of ½T 0

n�q : C
0�0, it will be designed so that the

arbitrarily given q eigenvalues of Lq are the q transmission zeros of system
triple ðA; B; Tn�qÞ.

Based on the first of the above five considerations, this adjustment
should be applied when pþ q4n since otherwise the arbitrary pole
assignment is already guaranteed, and should be executable if q6p > n,
because arbitrary pole assignment is generically possible if q6p > n [Wang,
1996]. Comparing the algorithm of Wang [1996], the computation of this
adjustment of Algorithm 8.1 is obviously much simpler. Besides, the
algorithm of Wang [1996] considered the pole assignment only (not the
eigenvector assignment).

This adjustment may not yield result if q6p4n because under this
condition arbitrary pole assignment is impossible [Wang, 1996].

Example 8.3 below demonstrated this adjustment.
Adjustment 2: Instead of designing Tn�q in Step 1 for the maximized

angles between the rows of ½T 0
n�q : C

0�0, it will be designed so that there are q
transmission zeros of system triple ðA; B; Tn�qÞ in desirable proximity
locations.

This deviation from the priority of exact pole assignment, which is
prevalent for forty years until today, is actually quite practical. First, there is
no generally optimal and precise pole selection (see Subsection 8.1.1).
Secondly, the other parameters of the matrix such as the conditions of the
eigenvectors, which determine the sensitivity of the poles, can be as
important as the poles themselves.

Because assigning proximity transmission zeros is conceivably easier
than assigning precise transmission zeros, this adjustment can be applied for
some open-loop systems with p6q4n, even though exact pole assignment is
impossible under these conditions and for arbitrarily given poles [Wang,
1996]. For example, stabilization (assign the q transmission zeros in the open
left half plane) should be possible in many cases even if p6q4n.

Because the requirement of proximity pole assignment is more vague
than that of precise pole assignment, the precise sufficient condition in terms
of parameters fn; p; qg for this assignment may not exist. A practical and
high quality feedback control system design that requires the guidance of
advanced control theory should consider not just stabilization, but also high
performance and robustness.
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Adjustment 3: As stated in the beginning of this subsection and in the
third of the above five considerations, the two groups of n� q (or n� p) and
then q (or p) poles are treated really differently by our design algorithm.
Therefore, the different grouping of the n poles into these two groups can
really make a difference.

Conceivably, One should place the more dominant and more critical
poles into the first group. This kind of considerations of groupings of the
system poles is similar to all three eigenvector assignment procedures of Sec.
8.2.

This design adjustment is demonstrated by Example 8.4 below, which
showed a quite improved design solution which is based on a different pole
grouping.

Adjustment 4: As stated in the fourth of the above five considerations
or in Sec. 6.3, our matrix C has uniquely two components. One component
is matrix C which is corresponding to the direct system output ½¼ CxðtÞ�
measurement. The second component is matrix T (not the same T of this
subsection) which is corresponding to a converged estimation of TxðtÞ.
Thus these two component matrices of C should be treated differently in the
design.

Matrix C appeared mainly in Step 2 of the design algorithm where the
q right eigenvectors Vq are assigned to make matrix CVq as well conditioned
as possible. This assignment should consider the difference between the rows
of component matrices C and T in matrix C. For example, the weighting on
the vectors of C may be higher than that on the vectors of T (see Algorithm
8.3). This design adjustment can be applied when there is design freedom for
Vq (or when pþ q > nþ 1).

Adjustment 5: Until now the first n� q left eigenvectors are assigned
either for maximized angles of the rows of matrix ½T 0

n�q : C
0�0 if qþ p > n, or

for pole assignment ðif pþ q4nÞ, in Design Adjustments 1 and 2 above.
However, the following possible different goal of eigenvector assignment
can also be considered.

Because the zero-input response of the feedback system state can be
stated as V eLtTxð0Þ, and because it is often useful to minimize the zero-
input response, a useful goal is to assign this T (the same T of this
subsection) such that Txð0Þ is minimized [if xð0Þ is known]. Although this
goal of eigenvector assignment was proposed before, that proposition was
for state feedback design case only.

This design adjustment is demonstrated by Example 8.5 below.
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Example 8.3: Adjustment 1

LetðA;B;CÞ ¼

0 1 0 0
0 0 1 0
0 0 0 1
1 0 1 0

2664
3775;

0 0
1 0
0 0
0 1

2664
3775; 1 0 0 0

0 1 0 0

� �0BB@
1CCA

and let the assigned poles be f�1; �2; �3; �4g.
Because pþ q is not greater than n, we will apply Design Adjustment 1

above to assign these four poles precisely.

Step 0: Ln�q ¼ diagf�1; �2g, and Lq ¼ diagf�3; �4g

Step 1: The q ð¼ 2Þ basis vectors for each of the n� q ð¼ 2Þ rows of
matrix Tn�q are

D1 ¼
u 0 �1 1
v 0 0 0

� �
and D2 ¼

x 3 �2 1
y 0 0 0

� �

where fu; v; x; yg can be arbitrary. Any linear combination
of the rows of D1 and D2 would make the last two columns of
the corresponding (4.1) equal 0 for all L. The remaining first
two columns of (4.1) can be satisfied by the free matrix L of
(4.1).

Because pþ q is not greater than n, we will select the linear
combinations of D1 and D2 so that the remaining two eigenvalues �3 and
�4 are the transmission zeros of system ðA; B; Tn�qÞ. Because p6q is not
greater than n, the solution may not exist. Fortunately, the solution exists in
this example as c1 ¼ c2 ¼ ½ 1 0 � and u ¼ 60 and x ¼ 84. The corresponding

Tn�q ¼
c1D1

c2D2

� �
¼ 60 0 �1 1

84 3 �2 1

� �

and is linearly independent of the rows of matrix C.
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Step 2: The design of Step 1 guarantees the unique solution of this
step as

Vq ¼

1 1
�3 �4
15 12

�45 �48

2664
3775 and Kq ¼

�6 4
119 179

� �

Step 3: From Eq. (8.13), K ¼ KqðCVqÞ�1 ¼ 36 10
61 60

� �
The corresponding matrix A� BKC has the desired eigenvalues.

Example 8.4: Adjustment 3

Let system ðA; B; CÞ and the assigned three eigenvalues be the same as that
of Examples 8.1 and 8.2.

Step 0: We select Ln�q ¼ �1 and Lq ¼ diagf�2;�3g, which is
different from the result of Step 0 of Examples 8.1 and 8.2.

Step 1: Equation (4.1) implies that

1 0 3 : �3 �5

0 1 0 : 1 1

� �
D1 E1

�3 0 �2
0 1 1
1 �1 �1

--- --- ---
0 �1 0
0 0 �1

26666664

37777775
¼ 0

We arbitrarily select c1 ¼ ½1 � 2� so that Tn�q ¼ c1D1 ¼
½1 � 2 3� and matrix ½T 0

n�qC
0�0 is rank n. The first column of

both sides of (4.1) equals 0 for this Tn�q and for all L. The
free matrix L can be used to satisfy the remaining two
columns of (4.1).
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Step 2: Because pþ q ¼ nþ 1, the solution of Step 2 is unique:

Vq ¼
2 �9

�5 3
�4 5

24 35 and Kq ¼
�5=2 13=4
7 �7

� �

It can be verified that both (8.11a) and (8.11b) are satisfied.

Step 3: From Eq. (8.13), K ¼ KqðCVqÞ�1 ¼ �1=26 35=42
�7=13 �14=13

� �
The corresponding matrix A� BKC has the desired eigenvalues, as

that of Examples 8.1 and 8.2. However, the feedback gain K is much smaller
(and therefore much more robust and much better) in this example.

Example 8.5: Adjustment 5

Same system and the same assigned eigenvalues as Examples 8.1, 8.2, and
8.4.

If the initial state is known as xð0Þ ¼ ½0 x 0�0 where x 6¼ 0, then in Step
1, D1xð0Þ ¼ ½0 x�0. To minimize Tn�qxð0Þ, we will select c1 ¼ ½1 0�. The
corresponding result of this adjustment is the same as that of Examples 8.1
and 8.2, and has the first row of Txð0Þ equal to 0.

On the other hand, if the initial state is known as xð0Þ ¼ ½x 2x x�0
instead where x 6¼ 0, then in Step 1, D1xð0Þ ¼ ½4x 2x�0. To minimize
Tn�qxð0Þ, we will select c1 ¼ ½1 �2�. The corresponding result of this
adjustment is the same as that of Example 8.4, and has the first row of Txð0Þ
equal to 0.

8.1.5 Conclusion

For the problem of assigning exactly n arbitrarily given eigenvalues to the
dynamic matrix A� BKC, the state feedback case [rank ðCÞ ¼ q ¼ n] has no
restriction on system ðA; B; CÞ, while the generalized state feedback case
has the restriction of qþ p > n on system ðA; B; CÞ.

However, even if qþ p4n but q6p > n, Adjustment 1 of our design
algorithm can still make the arbitrary pole assignment generically possible.

Because eigenvectors determine the sensitivity and robustness proper-
ties of their corresponding eigenvalues, different eigenvector assignments
can make a substantial difference in the condition number of the
corresponding eigenvalue assignment problem. As demonstrated by the
different eigenvector assignment results of Examples 8.1 and 8.4.
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The development of computationally reliable pole assignment algo-
rithms has been substantial for state feedback case [Gopinath, 1971;
Miminis and Paige, 1982; Petkov et al., 1986; Duan, 1993a] as well as for the
static output feedback case (similar to generalized state feedback case)
[Misra and Patel, 1989; Syrms and Lewis, 1993a]. But almost all of these
algorithms do not discuss how to assign the eigenvectors (the eigenvalue
assignment under more general conditions is already difficult enough
[Wang, 1996]). Thus these algorithms cannot prevent a bad eigenvector
assignment, which can make the corresponding eigenvalue assignment
problem bad conditioned, and thus make the computation of this
assignment unreliable in spite of a numerically stable algorithm.

Therefore eigenvector assignment is as important as eigenvalue
assignment. All pole assignment algorithms of this book are such that the
corresponding eigenvector assignment is in the form of assigning the linear
combination coefficients of the basis vectors of these eigenvectors. This is a
distinct advantage because the systematic and effective eigenvector assign-
ment algorithms (Algorithms 8.2 and 8.3) of the next section are based
entirely on this assignment formulation.

For the problem of eigenvector assignment assuming the eigenvalues
are already assigned exactly, there is also much difference between the state
feedback case and the generalized state feedback case. There are p basis
vectors for each eigenvector in state feedback case. In the generalized state
feedback case (Algorithm 8.1), there are q basis vectors for each of the first
n� q left eigenvectors, while there are only qþ p� n basis vectors for each
of the remaining q right eigenvectors.

In addition to assigning the eigenvectors for the best possible
condition, this subsection also proposed four different yet practical
objectives of eigenvector assignment in Adjustments 1, 2, 3, and 5.

Finally, in addition to these distinct advantages on the generality of
eigenvalue assignment (see the dual version and the Adjustments 1 and 2)
and on the unique and explicit form of eigenvector assignment, the
algorithm of this book is very simple in light of its tasks. This is fully
demonstrated by the numerical examples. The result in every step of these
five examples is explicit and in fraction form. This implies that the algorithm
is very explicit, simple, and analytical.

Based on these explicit, simple, and analytical design algorithms, this
book has opened several independent research directions on this very
challenging and very effective eigenstructure assignment problem, especially
in generalized state feedback case, as discussed in the five design adjustments
of subsection 8.1.4.
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8.2 EIGENVECTOR ASSIGNMENT

Eigenvectors are extremely important not only because they decide the
sensitivities of their corresponding eigenvalues, but also because of the
following important properties. From (2.2),

xðtÞ ¼ V eLtV�1xð0Þ þ
Z t

0

V eLðt�tÞV�1BuðtÞ dt ð8:18Þ

From (8.1b) and (8.6),

K ¼ K bV�1 ¼ ½B�1
1 : 0�ðA� VLV�1Þ ð8:19Þ

Thus if L is assigned and ½A;B;xð0Þ, and uðtÞ� are given, then the dominant
factor that finally decides the smoothness of response (8.18) (see also
Example 2.1) and the magnitude of the feedback control gain K of (8.19)
(see also Examples 8.1 and 8.4), is eigenvector matrix V.

From (8.5) there are p6n free parameters (in ci) available for
eigenvector assignment after the eigenvalues are assigned. Thus for p > 1,
the freedom of eigenvector assignment not only exists, but is also very
significant.

Research on eigenvector assignment dates from the mid-1970s [Moore,
1976; Klein and Moore, 1977; Fahmy and O’Reilly, 1982; Van Dooren,
1981; Van Loan, 1984]. However, it was only in 1985 that eigenvector
assigment freedom began to be expressed in terms of the basis vectors of
each eigenvector, such as ciDi of (6.1) for left eigenvectors [Tsui, 1985] and
Dici of (8.5) for right eigenvectors [Kautsky et al., 1985]. Here the Di

matrices are already determined and the ci vectors are completely free.
Although this is only a new expression of eigenvecvtor assignment

freedom, it finally enabled the full use of this freedom in many important
design applications (see Fig. 5.1).

This section discusses how to assign the eigenvectors so that the angles
between these vectors are maximized, based on this new expression or
formulation. Subsections 8.2.1 and 8.2.2 regard numerical methods
[Kautsky et al., 1985] and analytical rules [Tsui, 1986a, 1993a], respectively.

For uniformity, the entire section is formulated as the computation of
the p-dimensional column vectors ci for the eigenvectors Dici ði ¼ 1; . . . ; nÞ,
even though the Di matrices computed from different applications [such as
(6.1), (6.6), (8.10), (8.11), (8.15), and (8.16)] can have different dimensions.
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8.2.1 Numerical Iteration Methods [Kautsky et al., 1985]

The single purpose of numerical eigenvector assignment methods is to
maximize the angles between the eigenvectors. This purpose can also be
interpreted as minimizing the condition number of eigenvector matrix
V ; kðVÞ 4¼ kVk kV�1k.

From (2.16), (2.24), (8.19), and (2.2), a smaller kðVÞ can generally
imply higher robust performance, higher robust stability, lower control gain,
and smoother response, respectively.

To simplify the computation, the methods of this subsection require
that all p vectors dij ðj ¼ 1; . . . ; pÞ in each matrix Di ði ¼ 1; . . . ; nÞ be
orthogonal and normalized, or d0ijdik ¼ djk and kdijk ¼ 1 Vi and j. This
requirement can be met by the following two ways.

The first way is to satisfy this requirement during the computation of
Di itself. For example, in the computation of (8.4), we first make the QR
decomposition on the matrix:

½A� liI : �B� ¼ ½Ri : 0�Q0
i; i ¼ 1; . . . ; n ð8:20Þ

where Qi is an ðnþ pÞ-dimensional unitary matrix. Then the Di matrix of
(8.4) is

Di ¼ ½In : 0�Qi
0
Ip

� �
; i ¼ 1; . . . ; n ð8:21Þ

The second way is to compute matrices Di first, and then update these
matrices to satisfy this requirement. This second step can be accomplished
by making the QR decomposition on each Di:

Di ¼ QiRi; i ¼ 1; . . . ; n ð8:22aÞ

where Qi is an n-dimensional unitary matrix. The Di matrix can be updated
as

Di ¼ Qi
Ip
0

� �
; i ¼ 1; . . . ; n ð8:22bÞ

which retains the same properties of the original Di.
We will study two numerical methods named as Algorithms 8.2 and

8.3, respectively. The first method updates one vector per iteration, to
maximize the angle between this vector and other n� 1 vectors. The second
method updates two among a separate set (say, S) of n-orthonormal vectors
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at each iteration, to minimize the angles between these two vectors and their
corresponding Di’s while maintaining the orthonormality of S. These two
methods are named ‘‘rank-one’’ and ‘‘rank-two’’ methods, respectively, and
work from quite opposite directions (but for the same ultimate purpose).

Algorithm 8.2

Rank-one method of eigenvector assignment [Kautsky et al., 1985]

Step 1: Let j ¼ 0. Set arbitrarily an initial set of n vectors

vi ¼ Dici; i ¼ 1; . . . ; n ðkcik ¼ 1 ViÞ

Step 2: Let j ¼ j þ 1. Select a vector vj for updating. Then set the
n6ðn� 1Þ dimensional corresponding matrix

Vj ¼ ½v1 : . . . : vj�1 : vjþ1 : . . . : vn�

Step 3: Make QR upper triangularization of Vj:

Vj ¼ QjRj ¼½Qj : qj�
Rj

0

" #
n� 1

where Qj and Rj are n-dimensional unitary and ðn� 1Þ-
dimensional upper triangular matrices, respectively. Hence
qj ðkqjk ¼ 1Þ is orthogonal to RðVjÞ because q0jVj ¼ 0.

Step 4: Compute the normalized least-square solution cj of Djcj ¼ qj
or the projection of qj on Dj: (see Example A.8 or Golub and
Van Loan, 1989)

cj ¼
D0

jqj

kD0
jqjk

ð8:23Þ

Step 5: Update vector

vj ¼ Djcj ¼
DjD

0
jqj

kD0
jqjk

ð8:24Þ
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Step 6: Check the condition number of V ¼ ½v1 : . . . : vn�. Stop the
iteration if satisfactory. Otherwise go to Step 2 for another
iteration.

It is a normal practice to stop when all n vectors are updated, or when
index j equals n at Step 6.

At Step 3 the QR decomposition may not be performed from the start
to finish on matrix Vj, but may be obtained by updating the previous QR
decomposition result (on matrix Vj�1). The computation of this update is of
order n2 [Kautsky et al., 1985], which is substantially lower than 2n3=3 of the
normal QR decomposition (see Appendix A, Sec. A.2). However, such an
updating algorithm has not appeared in the literature.

Based on experience, Kautsky et al. [1985] points that the first sweep of
n vectors of Algorithm 8.2 is very effective in lowering kðVÞ, but the
algorithm cannot guarantee the convergence to the minimal kðVÞ. This is
because the maximization of the angle between one eigenvector to the others
cannot guarantee the maximization of all angles between the n eigenvectors.

Tits and Yang [1996] claim that each of the above iterations can
increase the determinant of matrix V ; jV j, and the whole algorithm can
converge to a locally maximum jV j depending on the initial value of V at
Step 1.

Algorithm 8.2 is also extended to the complex conjugate eigenvalue
case by Tits and Yang [1996], using complex arithmetic operations. To use
real arithmetic operations, the results corresponding to complex conjugate
eigenvalues in Algorithm 5.3 (Step 1) and in (8.3) can be used.

Algorithm 8.3

Rank-two method of eigenvector assignment [Kautsky et al., 1985; Method
3, 4; Chu, 1993b]

Step 1: Select a set of orthonormal vectors xi; i ¼ 1; . . . ; n. An
example of such a set is ½x1 : . . . : xn� ¼ I . Compute the basis
vector matrix Di which forms the complement space of
Di; i ¼ 1; . . . ; n.

Di ¼ Qi
0

In�p

� �
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where

Di ¼ Qi
Ri

0

� �
for i ¼ 1; . . . ; n. Minimizing angles between xi and Di is
equivalent to maximizing angles between xi and
Di; i ¼ 1; . . . ; n.

Step 2: Select two vectors xj and xjþ1 among the n vectors. Rotate
and update these two vectors by an angle y such that

½xj : xjþ1� ¼ ½xj : xjþ1�
cosðyÞ sinðyÞ
� sinðyÞ cosðyÞ

� �
ð8:24Þ

and such that the angle fj between xj and Dj and the angle
fjþ1 between xjþ1 and Djþ1 are maximized. This is expressed
in terms of y as

min
y
fr2j cos2 fj þ r2jþ1 cos

2 fjþ1g

¼ min
y
fr2j kD

0
jxjk

2 þ r2jþ1kD
0
jþ1xjþ1k2g

¼ min
y
fc1 sin2 yþ c2 cos

2 yþ c3 sin y cos yg ð8:25Þ

¼ min
y
ffðyÞg ð8:26Þ

where in (8.25),

c1 ¼ r2j x
0
jDjþ1D

0
jþ1xj þ r2jþ1x

0
jþ1DjD

0
jxjþ1

c2 ¼ r2j x
0
jDjD

0
jxj þ r2jþ1x

0
jþ1Djþ1D

0
jþ1xjþ1

c3 ¼ 2x0jðr2jþ1Djþ1D
0
jþ1 � r2j DjD

0
jÞxjþ1

9>>=>>; ð8:27Þ

and ri are weighting factors to fi ði ¼ j; j þ 1Þ. For example,
the optimization on robust stability measure M3 of (2.25)
requires that

ri ¼ jRefliÞj�1; i ¼ j; j þ 1
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The function f ðyÞ of (8.26) is positive, continuous and
periodic, and has a global minimum. The examination of
f ðyÞ of (8.25) shows that if c3 ¼ 0 or if c1 ¼ c2, then (8.25) is
at its minimum when y ¼ 0.

For c3 6¼ 0 and c1 6¼ c2, the nonzero values of y can be
determined by setting the derivative of f ðyÞ (with respect to
y) to zero:

f 0ðyÞ ¼ ðc1 � c2Þ sinð2yÞ þ c3 cosð2yÞ ¼ 0

or

c3

c2 � c1
¼ tanð2yÞ ¼ 2 tan y

1� tan2 y
ð8:28Þ

or

y ¼ 1

2
tan�1 c3

c2 � c1

� �
þ kp ð8:29Þ

where k ¼ 0;+1;+2; . . .
Integer k of (8.29) must also make the corresponding y
satisfy

f 00ðyÞ ¼ 2½ðc1 � c2Þ cosð2yÞ � c3 sinð2yÞ� > 0

or

tanð2yÞ < c1 � c2

c3
ð8:30Þ

Instead of (8.29), which computes y from the first
equality of (8.28) or from 2y, there is a more accurate
formula for y, which is derived from the second equality of
(8.28) such that

y ¼ tan�1 �1þ ð1þ c4Þ1=2

c4

" #
þ kp ð8:31aÞ

where

c4 ¼
c3

c2 � c1
ð8:31bÞ
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After y is determined from either (8.29) or (8.31) with
(8.30) guaranteed, (8.24) is the last computation of Step 2.

Step 3: If the value y of Step 2 is close to 0 or kp (k is an integer),
then xj and xjþ1 are already near the linear combination of
Dj and Djþ1.

If this is not true for all j, then go back to Step 2 for
more iteration. Otherwise, find the projections of all n-
updated vectors xi on the RðDiÞ ði ¼ 1; . . . ; nÞ, or

vi ¼
DiðD0

ixiÞ
kD0

ixik
; i ¼ 1; . . . ; n

The critical step of Algorithm 8.3 is obviously Step 2,
which has not appeared in the literature either. This version
is based on and revised from Chu [1993b].

According to Kautsky et al. [1985], the order of computation is similar
in each update of Algorithms 8.2 (Step 3) and 8.3 (Step 2). The order of
computation of (8.27) is 4pn (four pairs of x0iDk) which should constitute the
main computation of Step 2 of Algorithm 8.3, while the simplified
computation of Step 3 (Algorithm 8.2) is of order n2.

Also according to Kautsky et al. [1985], Algorithm 8.3 requires less
iteration and is more efficient than Algorithm 8.2, for well-conditioned
problems. This is understandable because Algorithm 8.3 starts with an ideal
orthonormal solution and then makes it approach the actual solution, while
Algorithm 8.2 starts with an arbitrary solution and then makes it approach
orthonormal. However, for ill-conditioned problems, both Algorithms 8.2
and 8.3 cannot yield reliable results [Kautsky et al., 1985]. In such a case we
may use the analytical rules of Subsection 8.2.2 or the ‘‘Method 1’’ of
Kautsky et al. [1985], but the latter can be very complicated.

Although Algorithms 8.2 and 8.3 cannot guarantee convergence for ill-
conditioned problems, they are still very popular among researchers because
of their relative simplicity as compared to Method 1 of Kautsky et al. [1985],
and they have already been made into CAD software [MATLAB, 1990].

An advantage of Algorithm 8.3 over Algorithm 8.2 is that the former
can consider the weighting factors ri, while the latter cannot. Thus a
direction of improvement for Algorithm 8.2 is to incorporate weightings
into its updating procedure. For example, the eigenvectors corresponding to
more dominant eigenvalues (see Subsection 2.2.2) should be updated first
and be updated more times, instead of being treated indifferently from less
critical eigenvectors as in the current version of Algorithm 8.2.
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Algorithm 8.3 could also be improved by the additional arrangement
of the combination pairs of xi and Di at Step 1. The current combination
pairs between xi and Di ði ¼ 1; . . . ; nÞ are arbitrarily made. However, in this
arbitrary initial combination, the angle between xi and Di may be large,
while the angle between xi and Djð j=iÞ may be small. Thus a more
reasonable initial arrangement should pair xi with Dj together instead of
with Di.

Consideration of the analytical information of eigenvalues and
controllability indexes in eigenvector assignment, is a feature of analytical
eigenvector assignment rules discussed in the next subsection.

8.2.2 Analytical Decoupling Method

Numerical eigenvector assignment methods are aimed at maximizing the
angles between the feedback system eigenvectors, or the minimization of the
condition number of the eigenvector matrix kðVÞ.

However, kðVÞ may not be generally accurate in indicating individual
eigenvalue sensitivity and system robust stability (see Sec. 2.2). In addition,
numerical methods often overlook some critical and analytical system
parameters and properties such as eigenvalues, controllability indices, and
decoupling. From Examples 2.4 and 2.5 and their analysis, decoupling is
very effective in eigenvalue sensitivity and robust stability.

Analytical eigenvector assignment discussed in this subsection is based
on decoupling. This assignment is also based substantially on the analytical
properties of eigenvalues and controllability indices ðmj; j ¼ 1; . . . ; pÞ.
However, this assignment cannot claim the sharp numerical property of a
minimized kðVÞ.

The analytical eigenvector assignment is also based on the block-
controllable Hessenberg form of system matrices (8.6), because this form
reveals the information of controllability indices. Three properties should be
noticed based on this form.

First, the feedback system eigenvectors (and their basis vectors) are
computed from only the lower n� p rows of matrix A and the feedback
system poles (see Step 1 of Algorithm 5.3 for the dual case).

Second, the feedback system eigenvectors are determined independent
of and prior to the feedback gain K, which can affect only the upper p rows
of matrix A and the upper p rows of matrix A� BK (see Step 3 of Algorithm
5.3 for the dual case).

Third and finally, if the basis vectors of the feedback system
eigenvectors are computed by back substitution operation, then each of
these basis vectors can be identified with one (say the j-th) of the p inputs of
the system (see Conclusion 5.1 and Example 5.5 for the dual case).
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Let us first analyze some analytical properties of these basis vectors if
they are computed by back substitution and based on the form (8.6) of the
system matrices. This analysis is also based on the assumption of
m ¼ m15m25 � � �5mp for simplicity of presentation. This assumption can
always be lifted because the sequence of system inputs can always be
altered.

Now for a fixed eigenvalue li and its corresponding eigenvector, each
of the p corresponding basis vectors, dij; j ¼ 1; . . . ; p, can be expressed as
[Tsui, 1987a,b, 1993a]

dij ¼

x : . . . : x : x
: : . . . : : : :
: : . . . : : : x
: : . . . : : : *

: : . . . : : : 0
: : . . . : : : :
x : . . . : x : 0

x : . . . : x :
: : . . . : : :
: : . . . : x :
: : . . . : * :
: : . . . : 0 :
: : . . . : : :
x : . . . : 0 :

:

x :
: :
x :
* :
0 :
: :
0 :

0
:
0

266666666666666666666666666666666666666666666666666664

377777777777777777777777777777777777777777777777777775



p1



p2

:



pmj

1
li
:
:

lmj�1
i

266664
3777754¼Ujvij ð8:32Þ
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In the matrix Uj above, the ‘‘x’’ entries are arbitrary elements, and the ‘‘*’’
entries are nonzero elements and are located at the j-th position from top
down of each block, and the block size pk ðk ¼ 1; . . . ; mÞ indicates the
number of controllability indices that are no smaller than k (see Definition
5.1 for the dual case). In addition, matrix Uj is determined only by the lower
n� p rows of matrix A, and is independent of li. Hence matrix Uj can be
considered a ‘‘coefficient matrix’’ of the j-th basis vector dij for any li.

The partition of dij in (8.32) is for analysis only. In actual design
computation the dij can be computed directly by back-substitution.

Example 8.6

Let m1 ¼ 4; m2 ¼ 2; m3 ¼ 2, and m4 ¼ 1. Then from (8.32),

di1 ¼

x x x *

x x x 0

x x x 0

x x x 0

x x * 0

x x 0 0

x x 0 0

x * 0 0

* 0 0 0

26666666666666666666666664

37777777777777777777777775

1

li
l2i
l3i

26664
37775 di2 ¼

x x

x *

x 0

x 0

x 0

* 0

0 0

0 0

0 0

2666666666666666666666664

3777777777777777777777775

1

li

� �

4
¼
U1vi1 4

¼
U2vi2
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di3 ¼

x x
x x
x *

x 0

x 0
x 0
* 0

0 0

0 0

26666666666666666664

37777777777777777775

1
li

� �
di4 ¼

x
x
x
*

0
0
0

0

0

26666666666666666664

37777777777777777775
4
¼
U3vi3 4

¼
U4vi4

Theorem 8.1

(A): For a fixed value of i (or li), its corresponding p basis vectors dij are
linearly independent.

(B): For a fixed value of j (or Uj), any set of mj basis vectors dij (mj
different values of i) are also linearly independent. Theorem 8.1 is dual to
Theorem 5.2.

Proof

Part A can be proved by the form of matrix Uj ðj ¼ 1; . . . ; pÞ in (8.32).
Part B can be proved by the fact that any mj of dij vetors ðsay;

i ¼ 1; . . . ; mjÞ can be written as [from (8.32)]

½d1j j . . . jdmj;j� ¼ Uj½v1jj . . . jvmj;j� 4¼ UjVj ð8:33Þ

Here matrix Vj according to (8.32) is a mj dimensional Vandermonde matrix,
which is nonsingular for different li. Now Part B follows from the form of
Uj of (8.32).

Part B can be extended to general eigenvalue cases. This is because in
(8.33) the eigenvalues are associated only with matrix Vj which is the right
eigenvector matrix of a companion form matrix [the transpose of (1.14)
Brand, 1968]. Therefore, in general eigenvalue cases only the matrix Vj

varies from the Vandermonde form, but remains a nonsingular right
eigenvector matrix.
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For example (Example 8.6), if we assign the first 4 ð¼ u1Þ ci’s
ði ¼ 1� 4Þ ¼ e1, the next 2 ð¼ u2Þ ci’s ði ¼ 5; 6Þ ¼ e2, the next
2 ð¼ u3Þ ci’s ði ¼ 7; 8Þ ¼ e3, and the last u4 ci ði ¼ 9Þ ¼ e4, (ei; i ¼ 1; . . . ; 4
is the i-th column of a p-dimensional identity matrix), then (8.33) implies
that V ¼ ½U1 : U2 : U3 : U4�diagfV1;V2;V3;V4g, where Vj is a Vander-
monde matrix of dimension uj and which is formed by the vectors vij
( j ¼ 1� 4, values of i are corresponding to the above assignment of ci).

Theorem 8.2

Let U 4¼ ½U1j . . . jUp� of (8.32). Let the eigenvalues li ði ¼ 1; . . . ; nÞ of the
block-controllable Hessenberg form matrix A� BK be divided into p
groups Lj ðj ¼ 1; . . . ; pÞ, and let each Lj be a Jordan form matrix and
corresponds to the same ordered li’s of matrix Vj of (8.33).
Then (A):

V ¼ U diagfV1; . . . ;Vpg ¼ ½U1V1j . . . jUpVp� ð8:34Þ

is a right eigenvector matrix of A� BK such that

V�1ðA� BKÞV ¼ diagfL1; . . . ;Lpg ð8:35Þ
and ðBÞ : U�1ðA� BKÞU ¼ Ac 4¼ diagfAc1; . . . ;Acpg ð8:36Þ

where Acj ðj ¼ 1; . . . ; pÞ are mj dimensional companion form matrices.

Proof

(A): The nonsingularity of matrix V of (8.34) is proved in Theorem 8.1.
Because UjVj of (8.32–8.34) satisfies (8.1b) to (8.5) for all values of j, (8.35)
is proved.

(B): Because Vj is the right eigenvector matrix of Acj ð j ¼ 1; . . . ; pÞ
such that

V�1
j AcjVj ¼ Lj; j ¼ 1; . . . ; p ð8:37aÞ

or

ðdiagfV1; . . . ;VpgÞ�1AcðdiagfV1; . . . ;VpgÞ ¼ diagfL1; . . . ;Lpg4¼L

ð8:37bÞ
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Then equality between the left-hand side of (8.35) and (8.37b) together with
the definition of (8.34) proves (8.36).

It should be emphasized that the block-controllable Hessenberg form
system matrices ðA; BÞ can be computed from the original system matrices
by orthonormal similarity transformation (see Algorithms 5.1 and 5.2).
Hence its feedback system dynamic matrix A� BK ’s corresponding
eigenvector matrix V of (8.34) has the same condition number as that of
the original system matrix.

On the contrary, the matrix U of (8.34) and (8.36) is not unitary and is
often ill conditioned. Hence the eigenvector matrix diagfV1; . . . ;Vpg of
(8.37), which corresponds to the feedback system dynamic matrix Ac of
(8.36), does not have the same condition number as that of matrix V of
(8.34). Therefore we will work on the assignment of matrix V instead of the
matrix diagfV1; . . . ;Vpg, even though the latter matrix is simpler.

Having analyzed the properties of general eigenvector assignment
formulation (8.5) and (8.32), we now present the eigenvector assignment rule
for decoupling. From (8.5) and (8.32), the eigenvector matrix can always be
generally expressed as

V ¼ U½diagfv11; . . . ; v1pgc1j . . . jdiagfvn1; . . . ; vnpgcn� ð8:38Þ

where ci ði ¼ 1; . . . ; nÞ are p-dimensional free column vectors.

General Rule of Eigenvector Assignment for Decoupling

It is clear that the eigenvector matrix V of (8.34) is a special case of that of
(8.38) in the sense that

mj of ci’s ¼ ej; j ¼ 1; . . . ; p ðeach value of i corresponds to a different

eigenvalue, and ej is the j-th column of a
p-dimensional identity matrixÞ

ð8:39Þ

It is also clear that while (8.38) and (8.34) have the same first (or the left)
component matrix U which is fixed by the open-loop system parameters
only [the lower n� p rows of (8.6)], the second (or the right) component
matrix of (8.38) and (8.34) is different. Specifically, the second component
matrix of (8.34) is a special case of the general second component matrix of
(8.38), and is decoupled into p diagonal blocks Vj; j ¼ 1; . . . ; p. Because

Copyright  2004 by Marcel Dekker, Inc. All Rights Reserved.



www.manaraa.com

decoupling is very effective in system robustness, our analytical eigenvector
assignment will be based on the form (8.34) or (8.39).

Under this general eigenvector assignment formulation, the only
freedom left is on the distribution of the n eigenvalues into the p diagonal
blocks of (8.34), while each block has dimension mj and corresponds to one
of the inputs, j ¼ 1; . . . ; p. The following are three analytical rules which can
guide this distribution, and which are closely related to Subsection 8.1.1.
Thus this analytical eigenvector assignment not only achieves decoupling,
but also fully considers the analytical system parameters such as the
controllability indices mj and the eigenvalues.

Rule 1

Distribute multiple eigenvalues (say, li ¼ liþ1) into different input blocks by
letting ci=ciþ1 in (8.34) or (8.39). This is because only at the same block or
only for a same value of j, can the corresponding eigenvectors of li and liþ1

be generalized or be defective [see the paragraphs before Conclusion 5.2 and
(5.15d)].

A basic result in numerical linear algebra is that the defective
eigenvectors cause high sensitivity of the corresponding eigenvalues [Golub
and Wilkinson, 1976b]. For example, singular value decomposition of any
matrix A is always well conditioned because the eigenvectors of matrix A*A
are never defective, even though the singular values or the square roots of
eigenvalues of matrix A*A can be multiple.

Rule 2

Distribute relatively more important eigenvalues (such as the one’s closer to
imaginary axis, see Chap. 2) into blocks with relatively smaller size mj.

This is because the smaller the dimension of a matrix block, usually the
smaller the condition number of that matrix block. For example, a matrix
with size equal to one (a scalar) always has the smallest possible condition
number ð¼ 1Þ.

Rule 3

Distribute the n eigenvalues so that all eigenvalues within each block have as
similar magnitude as possible, and have as evenly distributed phase angles
(between 908 and �90�) as possible.

This is because such eigenvalue pattern is derived from some optimal
single-input systems (see Rule (f) of Subsection 8.1.1). From a mathematical
point of view, because the eigenvalue magnitudes are related to singular
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values in equation s15jl1j5 � � �5jlnj5sn, a large difference in eigenvalue
magnitude implies a large condition number s1=sn. From a geometrical
point view, less evenly distributed phase angles imply near clustered (or
multiple) eigenvalue pattern.

The above three rules may not be exhaustive and cannot claim any
numerical optimality. However, the analytical rules are simple, general, and
do not require iterative numerical computation. Hence these rules can be
applied repeatedly in a trial-and-error and adaptive fashion (adapted using
the final results). The analytical results can also provide a more reasonable
initial value for the numerical methods.

It should be mentioned again that once the above distribution is made,
the eigenvectors can be computed directly from the open-loop system
matrices (8.6) and the li

0s without the component matrices U and
diagfVi; i ¼ 1; . . . ; pg (see Step 1 of Algorithm 5.3 for the dual case).
Nonetheless, these component matrices are computed in the following
example, to demonstrate and analyze more completely our analytical
eigenvector assignment rules.

Example 8.7

Let the system matrix be

½A : B� ¼

�20 0 0 0 0 : 20 0
0 �20 0 0 0 : 0 20

. . . . . . : . . . . . . . . . . . . . . . : . . . . . . . . . : . . . . . .
�0:08 �0:59 : �0:174 1 0 : 0 0
�18:95 �3:6 : �13:41 �1:99 0 : 0 0
2:07 15:3 : 44:79 0 0 : 0 0

26666664

37777775
This is the model of a fighter plane at flight condition of 3048m and Mach
0.77 [Sobel et al., 1984; Spurgeon, 1988]. The five system states are elevator
angle, flap angle, incidence angle, pitch rate, and normal acceleration
integrated, respectively, while the two inputs are elevator angle demand and
flap angle demand, respectively.

The problem is to design a state feedback gain K to assign the
eigenstructure of matrix A� BK , with eigenvalues
l1 ¼ �20; l2;3 ¼ �5:6+ j4:2, and l4;5 ¼ �10+ j10

ffiffiffi
3

p
.

We first compute the block-controllable Hessenberg form using the
dual of Algorithm 5.2. Because B is already in the desired form, only one
triangularization (for j ¼ 2) of the lower left corner of matrix A is needed.
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Hence the operator matrix H is

H ¼

1 0 0 0 0
0 1 0 0 0
0 0
0 0 H2

0 0

266664
377775 ¼

1 0 0 0 0
0 1 0 0 0
0 0 �0:0042 �0:9941 0:1086
0 0 0:0379 �0:1086 0:9931
0 0 0:9991 �0 0:0386

266664
377775

The resulting block-controllable Hessenberg form is

½H 0AH : H 0B�

¼

�20 0 0 0 0 : 20 0

0 �20 0 0 0 : 0 20

. . . . . . :: . . . . . . . . . . . . . . . . . . :: . . . . . . :: . . . . . . . . . . . . . . . . . . . . .

19:0628 5:2425 : �2:0387 0:4751 18:1843 : 0 0

0 �14:8258 : �0:0718 �1:6601 �43:0498 : 0 0

. . . . . . :: . . . . . . . . . : . . . . . . :: . . . . . . :: . . . . . . . . . . . . . . . . . . . . .

0:0002 0:0005 : �0:9931 �0:109 : �0:0114 : 0 0

2666666666664

3777777777775

which is still denoted as [A:B] in the rest of this example in order to be
compatible with the notation of Sec. 8.2. In this result, the elements [0.0002
0.0005] are computational error, and the controllability indexes are shown
as m1 ¼ 3; m2 ¼ 2.

We take back substitution operation (A.20) on the last n� p ð¼ 3Þ
rows of A� liI to derive the analytical expression of basis vectors dij of vi
of (8.4) such that ½0 : I3�½A� liI �dij ¼ 0. During each back substitution
operation, we first set 1 at the fifth or fourth element of dij , for j ¼ 1; 2,
respectively. As a result, the coefficient matrix of (8.32) can be derived as

U ¼ ½U1 : U2�

¼

0:67923 �0:114 �0:05395 : 0:9648 0:012415

�2:889 0:015167 0 : �0:108166 �0:06743

�0:0043141 �1:02945 0 : �0:11683 0

0 0 0 : 1 0

1 0 0 : 0 0

26666664

37777775
Because two pairs of the assigned eigenvalues are complex conjugate and
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there are only two inputs, we have only two possible different distributions:

diagfV1;V2g ¼ diag

1 1 1

l1 l2 l3
l21 l22 l23

264
375; 1 1

l4 l5

� �8><>:
9>=>;

L1 ¼ diagfdiagfl1; l2; l3g; diagfl4; l5gg ð8:40aÞ

and

diagfV1;V2g ¼ diag

1 1 1

l1 l4 l5
l21 l24 l25

264
375; 1 1

l2 l3

� �8><>:
9>=>;

L2 ¼ diagfdiagfl1; l4; l5g; diagfl2; l3gg ð8:40bÞ

The eigenvector matrix according to (8.34) is V ¼ ½U1V1 : U2V2� and is
named V1 and V2 for the two assignments of (8.40), respectively. During
actual computation, once the distribution of (8.40) is made, the matrix V can
be computed directly according to the dual of (5.10b) and (5.13c) without
explicit U and without complex numbers of (8.40).

To broaden the comparison, we let the third eigenvector matrix be

V3 ¼ QV1

¼

�0:0528 0:0128 �0:1096 �0:0060 �0:1555

0 �0:06745 0:0049 �0:1114 �2:904

0 0 �1:007 �0:1098 �0:01148

0 0 0 1 0

0 0 0 0 1

26666664

37777775
l41 l42 l43 l44 l45
l1 l2 l3 l4 l5
l31 l32 l33 l34 l35
1 1 1 1 1

l21 l22 l23 l24 l25

26666664

37777775
where Q is a nonsingular matrix such that ðQ�1AQ; Q�1BÞ is in block-
controllable canonical form [the transpose of (1.16)] [Wang and Chen,
1982]. Obviously there is no decoupling in this assignment (only one block
V1) and the Jordan form matrix of A� BK corresponding V3 is

L3 ¼ diagfl1; l2; l3; l4; l5g ð8:41Þ

Matrices Vi ði ¼ 1; 2; 3Þ are the right eigenvector matrix of A� BK
corresponding to eigenvalues in Li ði ¼ 1; 2; 3Þ, where the system matrix
ðA; BÞ is in the form (8.6). Because this pair of ðA; BÞ is computed from the
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original ðA; BÞ by orthonormal similarity transformation (with unitary
matrix H), the condition number of Vi equals that of the right eigenvector
matrix of the original A� BK .

The state feedback gain can now be determined after the eigenvectors
are determined. From (8.19) [or the dual of (5.16)], we first compute the
solution Kbof (8.1b)

Kî ¼ B�1
1 ½Ip : 0�ðAVi � ViLiÞ; i ¼ 1; 2; 3 ð8:42aÞ

From (8.1b), Kî ðViÞ�1 ¼ KiH
0 is the state feedback gain for the

system matrix HðA� BKiÞH 0 in the form (8.6). The state feedback gains Ki

for the original system matrix are (see the end of Subsection 8.1.2)

Ki ¼ KîðViÞ�1H; i ¼ 1; 2; 3 ð8:42bÞ

and whose numerical values are

K1 ¼
0:4511 0:7991 �1:3619 �0:4877 1:0057

0:0140 �0:0776 2:6043 0:2662 1:357

� �
K2 ¼

0:8944 0:9611 �20:1466 �1:7643 0:8923

0:0140 �0:5176 1:3773 0:1494 0:1800

� �
and

K3 ¼
1 5044 14;565 23 1033

0 �1 0 0 0

� �

It can be verified that the eigenvalues of matrices A� BKi ði ¼ 1; 2Þ are
correctly placed, while the eigenvalues of matrix A� BK3 differ a little from
the desired li ði ¼ 1; . . . ; 5Þ. This difference is caused by the computational
error rather than the method. This difference also shows that having a good
eigenvector assignment is important to the numerical accuracy aspect of
pole placement.

Table 8.1 provides a comparison of these three results.

Table 8.1 Two Numerical Measures of State Feedback Design for
Eigenstructure Assignment

K 1 K2 K3

kKikF 3.556 20.34 15,448
kðV iÞ 71.446 344.86 385,320
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The zero-input response of state xðtÞ of the three feedback systems,
corresponding to the initial state xð0Þ ¼ ½ 1 1 1 1 1 �0, is shown in
Fig. 8.1.

Figure 8.1 Zero-input responses of three systems with same eigenvalues
but different eigenvectors.
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It is clear that the lower the numerical measures in Table 8.1, the
smoother the zero-input response in Fig. 8.1. From Sec. 2.2, lower values of
kðVÞ in Table 8.1 also imply lower eigenvalue sensitivity (or better robust
performance) and better robust stability. In addition, lower gain kKikF in
Table 8.1 also implies lower control energy consumption and lower
possibility of disturbance and failure. Hence the numerical measures of
Table 8.1 and the response simulation of Fig. 8.1 can both be used to guide
design.

The comparison of these three examples also shows that eigenvector
assignment makes a dramatic difference in the aspect of technical quality of
the feedback system.

Unlike the numerical methods of Subsection 8.2.1 as well as the
optimal design methods of Chap. 9, there is a very explicit and analytical
understanding of the relation between the above properties of final results
and the design process of analytical eigenstructure assignment. Only this
understanding can guide the reversed adjustment of design formulation and
design procedure, based on the final results.

For example, the final result indicates that decoupling is extremely
effective because the third result, which does not have decoupling, is much
worse than the first two results, which have decoupling. This understanding
supports the basic decoupling formulation of the analytical eigenstructure
design.

For another example, a comparison between V1 and V2 of (8.40)
indicates that the larger block is dominant among the two blocks of Vi. For
the larger block V1 (with dimension m1 ¼ 3), kðV1Þ equals 653.7 and 896.5
for the two Vi’s, respectively, while for the smaller block V2 (with dimension
m2 ¼ 2), kðV2Þ equals 23.6 and 11.8 for the two Vi’s, respectively. Yet the
overall kðVi ¼ U diagfV1;V2gÞ ði ¼ 1; 2Þ is 71.44 and 344.86, respectively.
Thus kðV1Þ is dominant over kðV2Þ in deciding the overall kðViÞ. This
understanding reinforces the second rule (somehow over the third rule) of
the analytical eigenvector design.

SUMMARY

To summarize, Sec. 8.2 has introduced three relatively simple, systematic,
and general eigenvector assignment methods, and showed the dramatic
difference in feedback system quality caused by different eigenvector
assignment. Eigenvectors determine the robustness properties of their
corresponding eigenvalues, and their assignment exists only in multi-input
and multi-output (MIMO) system design problems, while eigenvalues can
most directly determine system performance. Now the robustness properties
of our control are also guaranteed of full realization for most system
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conditions and for the first time. Thus if the distinct advantage of modern
control theory was reflected mainly in the description of MIMO systems
before and since the 1960s, then this advantage can now be reflected in the
design of such control systems.

EXERCISES

8.1 Suppose n ¼ 10 and all assigned eigenvalues must be complex
conjugate.

(a) If q ¼ 7 and p ¼ 4, can you use Algorithm 8.1 directly? Why? Can
you use the dual version of Algorithm 8.1 directly? Why?

(b) If q ¼ 8 and p ¼ 3, can you use Algorithm 8.1 directly? Why? Can
you use the dual version of Algorithm 8.1 directly? Why?

(c) If q ¼ 7 and p ¼ 5, how can you use Algorithm 8.1 directly?
(d) If q ¼ 7 and p ¼ 5, how can you use the dual version of

Algorithm 8.1 directly?

8.2 Repeat Examples 8.1 and 8.2 by assigning eigenvalue �2 at Step 1 and
f�1 and �3g at Step 2.

8.3 Use Algorithm 8.1 and its dual version to assign poles
f�1;�2;�3;�4g to the following system [Chu, 1993a]. Notice that
the provided answer K is not unique:

(a)
ðA;B;C;KÞ ¼

0 1 0 0

1 1 0 0

�1 0 0 0

0 0 0 0

26664
37775;

0 0

1 0

0 0

0 1

26664
37775;

1 0 0 0

0 0 1 0

0 0 0 1

264
375; �47 34 10

49 �35 �11

� �0BBBB@
1CCCCA

(b)
ðA;B;C;KÞ ¼

0 1 0 0

0 0 1 0

0 0 0 1

�1 0 0 0

26664
37775;

1 0 0

0 0 0

0 1 0

0 0 1

26664
37775; 1 0 0 0

0 1 0 0

� �
;

�10 4:32

62 �35

52:58 �29=84

264
375

0BBBB@
1CCCCA
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8.4 Repeat Example 8.3 to assign eigenvalues f�1;�2;�3;�4g to the
following system [Chu, 1993a]

ðA;B;C;KÞ ¼

0 1 0 0

0 0 0 0

0 0 0 1

0 0 �1 0

26664
37775;

0 0

1 0

0 0

0 1

26664
37775; 0 1 1 0

1 0 0 1

� �
;

�50 �49:47

40:49 40

� �0BBB@
1CCCA

8.5 Repeat Example 8.3 and using the dual of (5.15) to assign eigenvalues
f�1;�1;�2;�2g to the following system [Kwon, 1987]

ðA;B;C;KÞ ¼

0 1 0 0
0 0 1 0
0 0 0 1
1 0 1 0

2664
3775;

0 0
1 0
0 0
0 1

2664
3775; 1 0 0 0

0 1 0 0

� �
;

14 6
19 18

� �0BB@
1CCA

8.6 Let n ¼ 5; p ¼ m ¼ 2 and, according to Conclusion 6.3, q ¼ mþ r,
where r is the number of stable transmission zeros of the system.
According to Davison and Wang [1974], there are generically
n�m ¼ 3 transmission zeros of the system. Therefore we assume
there are always 3 transmission zeros in this system.

Let the probability of each zero being stable as P1 ¼ 1=2 (if the
system model is given arbitrarily) or as P2 ¼ 3=4 (three times better
than 1/2), respectively. Then the probability of minimal-phase (all
three zeros are stable) is ðP1Þ3 ¼ 0:125 or ðP2Þ3 ¼ 0:422, respectively
(see Exercises of Chap. 4).

Answer the following questions based on P1 and P2. The
probability of r stable zeros is ½r : 3�ðPiÞrð1� PiÞ3�r (i ¼ 1; 2; ½r : 3� is
the combination of r out of 3, also see Exercise 4.2).

(a) The probability of full (arbitrary) state feedback.

Answer : q ¼ n; r ¼ 3;P1ðr ¼ 3Þ ¼ 0:125;P2ðr ¼ 3Þ ¼ 0:422:

(b) The probability of arbitrary pole placement and partial eigen-
vector assignment or better.

Answer : q54 so that qþ p > n; r52;P1ðr52Þ ¼ 0:5;P2ðr52Þ ¼ 0:844:
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(c) The probability of arbitrary pole placement with no eigenvector
assignment or better.

Answer : q53 so that q6p > n; r51;P1ðr51Þ ¼ 0:875;P2ðr51Þ
¼ 0:9844:

(d) The probability of no arbitrary pole or eigenvector assignment
(ordinary static output feedback).

Answer : q ¼ m ¼ 2 so that q6p 6> n; r ¼ 0;P1ðr ¼ 0Þ
¼ 0:125;P2ðr ¼ 0Þ ¼ 0:0156:

This example shows quite convincingly the following three decisive
advantages of the new design approach of this book. (1) It is very general
even it is required to be good enough [see answer of Part (c)]. (2) It achieves
exact LTR far more generally than the existing state feedback control as
shown by comparing the probability of Part (c) with the probability of one
of the conditions of existing exact LTR—minimum-phase. (3) Its control
can achieve arbitrary pole assignment far more generally than the existing
static output feedback as shown by comparing the probability of Part (c)
with 0%.

8.7 Repeat Problem 8.6 by changing only the parameter n from 5 to 4.

8.8 Assign poles fl1 ¼ �1; l2;3 ¼ �2+j; l4;5 ¼ �1+j2g by state feedback:

A ¼

0 1 0 : 0 0
0 0 1 : 0 0
2 0 0 : 1 1
. . . . . . . . . : . . . . . . . . .
0 0 0 : 0 1
0 0 0 : �1 �2

26666664

37777775 and

B ¼

0 0
0 0
1 0
. . . . . .
0 0
0 1

26666664

37777775
Verify and compare eigenvectors, condition of eigenvector matrix
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kðVÞ, norm of feedback gain kKkF , robust stability (as in Example 2.5)
of the feedback system matrix A� BK , and zero-input response for
xð0Þ ¼ ½ 2 1 0 �1 �2 �0, for the following three eigenstructure
assignments (partial answers are provided):

(a) ðL;KÞ ¼ diagfl1;2;3; l4;5g;
7 9 5 1 1
0 0 0 4 0

� �� �

(b) ðL;KÞ ¼ diagfl1;4;5; l2;3g;
7 7 3 1 1
0 0 0 4 2

� �� �

(c) ðL;KÞ ¼ diagfl1;2;3;4;5g;
2 0 0 0 1
25 55 48 23 5

� �� �
Hint:

1. Refer to Example 8.7
2. System ðA; BÞ is a state permutation away from the block-

controllable Hessenberg form (and canonical form). To derive the
latter, permute the rows of ðA; BÞ and the columns of A for the new
sequence f3; 5; 2; 4; 1g.

8.9 Repeat 8.8 for the new system

A ¼

0 1 0 : 0 0
0 0 1 : 0 0
3 1 0 : 1 2
. . . . . . . . . . . . . . . . . .
0 0 0 : 0 1
4 3 1 : �1 �4

26666664

37777775 and

B ¼

0 0
0 0
1 0
. . . . . .
0 0
0 1

26666664

37777775
and for the following three different eigenstructure assignments:

(a) ðL;KÞ ¼ diagfl1;2;3; l4;5g;
8 10 5 1 2
4 3 1 4 �2

� �� �

(b) ðL;KÞ ¼ diagfl1;4;5; l2;3g;
8 8 3 1 2
4 3 1 4 0

� �� �
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(c) ðL;KÞ ¼ diagfl1;2;3;4;5g;
3 1 0 0 2
29 58 49 23 3

� �� �
8.10 Repeat 8.8 for the new system

A ¼

0 1 0 : 0 0
0 0 1 : 0 0

�10 �16 �7 : 1 2
. . . : . . . : . . . : . . . . . . . . .
0 0 0 : 0 1
4 3 1 : �2 �2

26666664

37777775 and

B ¼

0 0
0 0
1 0
. . . . . .
0 0
0 1

26666664

37777775
and for the following two different eigenstructure assignments:

(a) ðL;KÞ ¼ diagfl1;2;3; l4;5g;
�5 �7 �2 1 2
4 3 1 3 0

� �� �

(b) ðL;KÞ ¼ diagfl1;4;5; l2;3g;
�5 �9 �4 1 2
4 3 1 3 2

� �� �
Also see the last three design projects of Appendix B for the exercises of
numerical eigenvector assignment algorithms.
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9

Design of Feedback Control—Quadratic
Optimal Control

In the modern control design literature, besides eigenstructure assignment,
there is a main result called ‘‘linear quadratic optimal control’’ (LQ). The
two designs are quite opposite in direction. The eigenstructure assignment,
especially the analytical eigenvector assignment, is designed mainly from the
bottom up, based on the given plant system’s structure. On the contrary, the
LQ control is designed from top down, based on a given and abstract
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optimal criterion as

J ¼ ð1=2Þ
Z?
0

½xðtÞ0QxðtÞ þ uðtÞ0RuðtÞ�dt ð9:1Þ

where Q and R are symmetrical, positive semi-definite and symmetrical,
positive definite matrices, respectively. The LQ design is aimed at
minimizing J of (9.1) under the constraint (1.1a)

_xxðtÞ ¼ AxðtÞ þ BuðtÞ and xð0Þ ¼ x0

Inspection of (9.1) shows that to minimize or to have a finite value of
J; xðt ! ?Þ must be 0. Hence the control system must be stable (see
Definition 2.1). In addition, among the two terms of J, the first term reflects
the smoothness and quickness of xðtÞ before it converges to 0, while the
second term reflects the control energy, which is closely related to control
gain and system robustness (see Example 8.7). Hence the LQ design can
consider both performance and robustness.

Performance and robustness properties in general are contradictory to
each other. For example, the faster the xðtÞ converges to 0, the higher the
control power needed to steer xðtÞ.

The two weighting matrices Q and R can reflect the relative
importance of these two properties. A relatively large Q (compared to R)
indicates higher priority for performance over control energy cost. When
R ¼ 0, the corresponding LQ problem is called ‘‘minimal (response) time
problem’’ [Friedland, 1962]. Anti-air missile control problems are such
problems. On the other hand, a relatively small Q (compared to R) indicates
higher priority on saving control energy over performance. When Q ¼ 0, the
corresponding LQ problem is called the ‘‘minimal fuel problem’’ [Atha-
nassiades, 1963]. Remote-orbit space craft control can be considered such a
problem.

However, the above design consideration is made in terms of only the
magnitude of matrices Q and R. There are no other general, analytical, and
explicit considerations of system performance and robustness made on the
n2 parameters of Q and the p2 parameters of R (or criterion J). Hence the
LQ problem itself is still very abstract and reflects still vaguely the actual
system performance and robustness. For example, the problem ðJÞ is set
without considering the information of the plant system parameters ðA; BÞ.
To summarize, matrices Q and R (or J) are not really the direct and accurate
reflection of actual system performance and robustness.
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This critical problem is further compounded by the fact that unlike the
eigenstructure assignment, once the criterion J is set, it is very hard to
systematically, automatically, and intelligently adjust it based on the finally
computed design solution and its simulation. This is due to the fact that
complicated and iterative numerical computation is needed to compute the
solution that minimizes J. The comparison of computational difficulty of all
design algorithms of Chaps 8 and 9 is made in Sec. 9.3.

It should be noticed that the above two critical drawbacks of LQ
design is at least shared by all other optimal design results, if not more
severe. For example, the optimal design problems based on the system
frequency response are even less direct and less generally accurate in
reflecting system performance and robustness (see Chap. 2), and many
optimal control problems other than the LQ problem require even much
more computation than that of the LQ problem.

Regarding the LQ control problem, it has been extensively studied and
covered in the literature. This book intends to introduce only the basic
design algorithm and basic physical meanings of this problem. Readers can
refer to the ample existing literature for the corresponding theoretical
analysis, proofs, and generalizations.

As with the presentation of eigenstructure assignment, the LQ design
of this chapter is divided into state feedback control KxðtÞ and generalized
state feedback control KCxðtÞ [rankðCÞ4n] cases, which are treated in Secs
9.1 and 9.2, respectively.

9.1 DESIGN OF DIRECT STATE FEEDBACK CONTROL

The direct state feedback design for LQ optimal control has been extensively
covered in literature [Kalman, 1960; Chang, 1961; Pontryagin, 1962;
Athans, 1966; Bryson and Ho, 1969; Anderson, 1971; Kwakernaak and
Sivan, 1972; Sage and White, 1977]. The following solution can be
formulated using calculus of variation with Lagrange multipliers.

Theorem 9.1

The unique solution that minimizes J of (9.1) and that is subject to (1.1a) is

u*ðtÞ ¼ �K*xðtÞ; where K* ¼ R�1B0P ð9:2Þ

and P is the symmetric and positive definite solution matrix of the following
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algebraic Riccati equation (ARE)

PAþ A0PþQ� PBR�1B0P ¼ 0 ð9:3Þ

Based on the LQ optimal control u*ðtÞ, there is an optimal state
trajectory x*ðtÞ which is the solution of

_xx*ðtÞ ¼ Ax*ðtÞ þ Bu*ðtÞ; x*ð0Þ ¼ x0 ð9:4Þ

and the minimized LQ criterion is

J* ¼ 1

2

� �
x00Px0 ð9:5Þ

Theorem 9.1 indicates that the main difficulty of LQ optimal design
concerns the solving of ARE (9.3). There are a number of numerical
methods available for solving (9.3) such as the method of eigenstructure
decomposition of Hamiltonian matrix [Van Loan, 1984; Byers, 1983, 1990;
Xu, 1991]

H ¼ A �BR�1B0

�Q �A0

� �
ð9:6Þ

and the method of matrix sign function [Byers, 1987], etc. The basic version
of the first method with Schur triangularization [Laub, 1979] is described in
the following.

Algorithm 9.1. Solving Algebraic Riccati Equation (ARE)

Step 1: Compute the Hamiltonian matrix H of (9.6).
Step 2: Make Schur triangularization [Francis, 1961, 1962] of

matrix H such that

U 0HU ¼ S ¼ S11 S12

0 S22

� �
; U 0U ¼ I ð9:7Þ

where matrix S is an upper triangular (called Schur
triangular form) matrix whose diagonal elements equal
the eigenvalues of H (except a 262 diagonal block for
complex conjugate eigenvalues), and the eigenvalues in
matrix S11 are stable.
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Step 2a: Let k ¼ 1;H1 ¼ H.
Step 2b: Compute the unitary matrix Qk such that

Q0
kHk ¼ Rk ð9:8Þ

where Rk is upper triangular (see Appendix A, Sec. 2).
Step 2c: Compute Hkþ1 ¼ RkQk: ð9:9Þ
Step 2d: If Hkþ1 is already in Schur triangular form (9.7), then go to

Step 3; otherwise let k ¼ kþ 1 and go back to Step 2b.

Step 3: Based on (9.8) and (9.9),

Hkþ1 ¼ Q0
kHkQk ¼ Q0

k � � �Q0
1H1Q1 � � �Qk

Therefore the solution matrix U of (9.7) is

U ¼ Q1 � � �Qk 4
¼

U11 U12

U21 U22

� �
gn ð9:10Þ

A comparison of (9.7) and (9.3) shows that

P ¼ U21U
�1
11 ð9:11Þ

To accelerate the convergence of Step 2 in the actual computation, the
Step 2b [or (9.8)] can be adjusted such that it becomes

Q0
kðHk � skIÞ ¼ Rk

and Step 2c [or (9.9)] can be adjusted correspondingly such that

Hkþ1 ¼ RkQk þ skI

This adjusted version of Step 2 is called the ‘‘shifted version,’’ where sk is
determined by the eigenvalues ðak+jbk; or ak and bkÞ of the bottom right
262 corner block of Hk:

h2n�1;2n�1 h2n�1;2n

h2n;2n�1 h2n;2n

� �

Copyright  2004 by Marcel Dekker, Inc. All Rights Reserved.



www.manaraa.com

The actual value of sk is recommended as [Wilkinson, 1965]

sk ¼
ak; if ak+jbk or if jak � h2n;2nj4jbk � h2n;2nj
bk; if jak � h2n;2nj > jbk � h2n;2nj

�
It is clear that the main computation of Algorithm 9.1 is at Step 2b,

which is repeated within Step 2 until matrix Hk converges to the Schur
triangular form. From Sec. A.2, the order of computation of Step 2b using
the Householder method is about 2ð2nÞ3=3 (the dimension of matrix H is
2n). Hence the computation required by Step 2 can be very complex.

Because of some special properties of Hamiltonian matrix H, it is
possible to half the dimension of H during the computation of Step 2. One
such algorithm [Xu, 1991] is described briefly in the following.

First compute H2, which is skew symmetrical ðH2 ¼ �ðH2Þ0Þ. The
Schur triangularization will be made on H2.

Make elementary symplectic transformation on H2 [Paige and Van
Loan, 1981] such that

V 0H2V ¼ H1 X
0 H 0

1

� �
; ðV 0V ¼ IÞ ð9:12Þ

where H1 is in upper Hessenberg form (5.1). This is the key step of the
revised version of Step 2.

Make the Schur triangularization on matrix H1, which has dimension
n (instead of 2n). This is still the main computational step, with the order of
computation at each iteration equal to 2n3=3.

Finally, compute the square root of the result of the Schur
triangularization of H1 [Bjorck and Hammaling, 1983] in order to recover
this result to that of the original Hamiltonian matrix H.

9.2 DESIGN OF GENERALIZED STATE FEEDBACK
CONTROL

Generalized state feedback KCxðtÞ is a state feedback with or without
constraint [for rankðCÞ < n or ¼ n, respectively]. Therefore its design result
is weaker than that of state feedback if rankðCÞ < n but it can also equal
that of the state feedback if rankðCÞ ¼ n.

Among the existing methods of this design [Levine and Athans, 1970;
Cho and Sirisena, 1974; Horisberger and Belanger, 1974; Toivonen, 1985;
Zheng, 1989; Yan et al., 1993], that of Yan et al. [1993] is briefly described in
the following because this result satisfies the above-stated generalized
properties. This method is called the gradient method.
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This method is based on the partial derivative of J of (9.1) with respect
to K :

qJ

qK
¼ ½RKC � B0P�LC0 ð9:13Þ

where P and L are the positive semi-definite solution matrices of the
following two Lyapunov equations:

PðA� BKCÞ þ ðA� BKCÞ0P ¼ �C
0
K

0
RKC �Q ð9:14Þ

and

LðA� BKCÞ0 þ ðA� BKCÞL ¼ �P ð9:15Þ

Based on this result, the gradient flow of K with respect to J is the
homogeneous differential equation

_KK ¼ ½B0P� RKC�LC0 ð9:16Þ

whose solution K can be computed by a number of numerical methods. The
simplest is the first-order ‘‘Euler method’’:

Kiþ1 ¼ Ki þ DKiDt ¼ Ki þ ð½B0Pi � RKiC�LiC
0ÞDt ð9:17Þ

where DKi or Pi and Li must satisfy (9.14) and (9.15) for the current Ki, and
the initial constant values K0 and interval Dt should be set to guarantee the
convergence and the speed of convergence of (9.17) [Helmke and Moore,
1992].

Theorem 9.2.

Define J to be a set of finite J of K (9.1), ðJðKÞÞ. In addition, the set J

includes the global and local minima of JðKÞ. Then under the assumption
that JðK0Þ is finite, the gradient method (9.14)–(9.16) has the following four
properties:

1. The gradient flow (9.16) has a unique solution K such that
JðKÞ [ J.

2. The index JðKiÞ is nonincreasing with each increment of i.
3. limi!? DKi ¼ 0 ð9:18Þ
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4. There is a convergent sequence Ki to the equilibrium of (9.16)
whose corresponding JðK?Þ [ J.

Proof

The proofs can be found in Yan et al. [1993].

In addition, the inspection of (9.13), (9.16), and (9.17) shows that when
Rank ðCÞ ¼ n;K ¼ R�1B0PC

�1
, which equals the optimal solution of state

feedback case K ¼ R�1B0P (9.2) when C ¼ I . Thus (9.16) and its solution
unify the result of the state feedback case of Sec. 9.1 as its special case.

Similar to the state feedback case, the main computation of (9.16)–
(9.17) is the solving of Lyapunov equations (9.14)–(9.15). There are a
number of such numerical methods available [Rothschild and Jameson,
1970; Davison, 1975]. The following is a method using Schur triangulariza-
tion [Golub et al., 1979].

Algorithm 9.2 Solving Lyapunov Equation APþ PA0 ¼ �Q

Step 1: Make a Schur triangularization of matrix A:

U 0AU ¼

A11 A12 . . . A1r

0 A22 . . . A2r

..

. . .
. . .

. ..
.

0 . . . 0 Arr

26664
37775 ðU 0U ¼ IÞ ð9:19Þ

where Aii ði ¼ 1; . . . ; rÞ are 161 or 262 real matrix blocks.
The actual computation of this step is discussed in Step 2 of
Algorithm 9.1.

Step 2: Compute

U 0QU ¼
Q11 . . . Q1r

..

. ..
.

Qr1 . . . Qrr

264
375

where Qij has the same dimension as that of Aij ; Vi; j.
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Step 3: Replace A, P, and Q of the Lyapunov equation by
U 0AU;U 0PU, and U 0QU, respectively, to get

U 0AUU 0PU þU 0PUU 0A0U ¼ �U 0QU ð9:20Þ

or

A11 . . . A1r

. .
. ..

.

0 Arr

2664
3775

P11 . . . P1r

..

. ..
.

Pr1 . . . Prr

2664
3775þ

P11 . . . P1r

..

. ..
.

Pr1 . . . Prr

2664
3775

A0
11 0

..

. . .
.

A0
1r . . . A0

rr

2664
3775 ¼ �

Q11 . . . Q1r

..

. ..
.

Qr1 . . . Qrr

2664
3775

Solving (9.20), we have for i ¼ r; r� 1; . . . ; 1 and
j ¼ r; r� 1; . . . ; 1:

Pij ¼

P0
ji;

� ðAii þ AjjÞ�1 Qij þ
Xr
k¼iþ1

AikPkj þ
Xr
k¼jþ1

PikA
0
jk

" #
ðfor scalar AjjÞ

� Qij þ
Xr
k¼iþ1

AikPkj þ
Xr
k¼jþ1

PikA
0
jk

" #
ðAii þ AjjÞ�1ðfor scalarAiiÞ

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
if i5j

ð9:21Þ

There are two possible formulas for the case i5j because
matrix blocks Aii and Ajj can have different dimensions. In
this case the scalar block must be multiplied by I2 before
being added to the other 262 block. These two formulas are
equivalent if both blocks are scalar. However, when both
blocks are 262, then the corresponding solution Pij will be
the solution of a 262 Lyapunov equation

AiiPij þ PijA
0
jj ¼ �Qij ð9:22Þ

where Qij equals the matrix inside the square brackets of
(9.21). Because (9.22) is a special case of (8.1) [or the dual of
(4.1)], we can use the formula (8.3) for solving (8.1) to solve
(9.22). To do this, we let Pij ¼ ½p1 : p2� and Qij ¼ ½q1 : q2�.

ð9:21Þ

9>>>>>=>>>>>;

if i < j
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Then

½I26Aii þ Ajj6I2�½p01 : p02�
0 ¼ �½q01 : q02�

0

can provide all parameters of Pij .
Step 4: Compare (9.20) with the original equation APþ PA0 ¼ �Q,

P ¼ U

P11 . . . P1r

..

. ..
.

Pr1 . . . Prr

264
375U 0

The main computation of the above algorithm is still at Step 1 of
Schur triangularization. Although the matrix A� BKC [of (9.14) and (9.15)]
of this step has dimension n while the dimension of a Hamiltonian matrix of
Algorithm 9.1 is 2n, the entire Algorithm 9.2 has to be iteratively used within
another iteration loop of (9.17). Hence the generalized state feedback LQ
design is much harder than the state feedback LQ design.

9.3 COMPARISON AND CONCLUSION OF FEEDBACK
CONTROL DESIGNS

The order of computation of the design methods of Chaps 8 and 9 is
summarized in the following Table 9.1. As stated at the beginning of
Chap. 8, the designs of these two chapters determine fully the feedback
control and the corresponding feedback system loop transfer function. This
control and its loop transfer function are guaranteed of full realization by
the generalized output feedback compensator of this book.

It should be noted that orthonormal matrix operation is uniformly
used in the main step of each design algorithm. Hence the order of
computation of Table 9.1 is based on compatible assumptions and can
therefore reveal the relative difficulty of each design algorithm.

Although the actual number of iterations needed in each loop/layer
differs from problem to problem, it can be very huge (more than n4) before
convergence to a reasonably accurate value (if convergent at all). This is why
applied mathematicians make great effort just to half the size of the
Hamiltonian matrix before let it go through iteration for Schur triangular-
ization (see the end of Sec. 9.1). Hence the computational difficulty is
determined by the number of layers of iteration, as listed in the middle
column of Table 9.1.
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The middle column of Table 9.1 shows clearly that eigenstructure
assignment is much easier than LQ optimal design, and the state feedback
design is much easier than the generalized state feedback design.

Furthermore, it seems that the addition of each constraint equation to
the optimal criterion would result in one more layer of iteration for
convergence. For example, because of the addition of a simple constraint
equation K ¼ KC, the generalized state feedback design for LQ has one
more layer of iteration than that of the state feedback design for LQ.

It should be noticed that under the new design approach of this book,
the dynamic part of the feedback compensator is fully determined in Chap.
6, while Table 9.1 deals only with the design of the compensator’s output
part K ¼ KC. Thus the design of Chaps 8 and 9 is already much simplified
and much more specific than any design of the whole dynamic feedback
compensator.

This simplification should be general for the designs of control
objectives other than that of Chaps 8 and 9. For example, H? design is
much more simplified and specific in either the state feedback case
[Khargoneker, 1988] or the generalized state feedback case [Geromel et
al., 1993; Stoustrup and Niemann, 1993]. Other optimal designs such as H2

[Zhou, 1992; Yeh et al., 1992] and L1 [Dahleh and Pearson, 1987; Dullerud
and Francis, 1992] should have similar simplification and specification,
when applied to the design of KCxðtÞ only.

Table 9.1 Computational Difficulties of Feedback Control Design Methods

Design methods for
A� BKC , where A [Rn6n ;
B [Rn6p ;C [Rq6n

are given

Number of layers of
iterations for

convergence needed in
design algorithm

Order of
computation in
each iteration

Pole assignment:
Compute (8.6) 0 (Algorithm 5.2) 4n3/3
Compute (8.4) 0 [see (A.20)] npðn � qÞ2/2
Compute (8.20) (for

Algorithms 8.2 and 8.3) 2n4/3
Eigenvector assignment:
Analytical methods 0 0
Algorithm 8.2 1 n22 to 2n3/3
Algorithm 8.3 1 4pn

LQ optimal control design:
State feedback case 1 2n3/3 to 2ð2nÞ3/3
Generalized state feedback 2 23/3
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Out of so many design methods for KCxðtÞ, each has claimed exclusive
optimality (the unique solution of one optimal design is not shared by the
other optimal designs), we recommend strongly eigenstructure assignment
because of the following two distinct advantages.

The first decisive advantage is at design formulation. Eigenvalues
determine system performance far more directly and generally accurately
(see Sec. 2.1), while the robustness properties of these eigenvalues are
determined by their corresponding eigenvectors. Hence their assignment
should improve feedback system performance and robustness far more
directly and therefore effectively. For example, there is a whole subsection
(Subsection 8.1.1) dealing with the translation of system properties to the
eigenvalues.

In sharp contrast, there is virtually no general, analytical, and explicit
translation from these properties to the weighting matrices (except their
magnitude) of any of the optimal design formulations. There is no
consideration of open-loop system parameters into the weighting matrices
of any of these optimal design formulations either. The frequency response
measures of system properties are even less direct and generally accurate.
For example the bandwidth is far less generally accurate in reflecting system
performance (see Sec. 2.1 especially Example 2.2), while the robust stability
measures from the frequency response methods such as gain margins and
phase margins are far less generally accurate either (see Subsection 2.2.2). In
fact, the existing optimal design result is optimal only to the very abstractly
and narrowly defined criterion which does not reflect generally accurately
real system performance and robustness. This is further evidenced by the
very existence of more than one of these optimal definitions such as H?, H2,
and L1.

The second decisive advantage is at the ability to adjust the design
formulation from the final design results and simulations. In practice, there
can be no real good design without this feedback and adjustment. In this
book, eigenvalue selection (Subsection 8.1.1) and placement (Subsection
8.1.4) are adjustable, as well as the numerical eigenvector assignment
(weightings to each eigenvector) and the analytical eigenvector assignment
(see Example 8.7). In addition, the feedback compensator order of our
design is also fully adjustable for the tradeoff between the control strength
and the degree of realization of robustness properties of this control (see
Sec. 6.4).

From the middle column of Table 9.1, the computation of the solution
of LQ optimal design formulations requires iteration for convergence.
Notice that even more layers of iteration for convergence are required by
some optimal designs other than the LQ optimal design, such as the state
space version of H? design where several Riccati equations are to be
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satisfied simultaneously [Zho et al., 1995]. This kind of design computation
not only is difficult to implement in practice, but also loses the track between
the design formulation and the numerical design solution. Thus in optimal
designs, the automatic, general, intelligent, and analytical adjustment of the
design formulation (from the design solution) is virtually impossible, even
though these design formulations are too abstractly and narrowly defined to
truly reflect real system performance and robustness.

We believe that these two distinct advantages are also the main
reasons that made the state space theory prevalent over the previously
prevalent and loop transfer function–based classical control theory in the
1960s and 1970s (eigenvectors can be assigned only based on state space
models and only by state/generalized state feedback control). The problem
with the state space theory is not at its form of control KCxðtÞ, but at the
failure to realize this control especially its robustness properties (generating
the signal KCxðtÞ is not enough). Now this failure is claimed overcome
decisively by the design of this book (Chap. 6).

EXERCISES

9.1 Let the system be

A ¼ 0 1
0 0

� �
and B ¼ 0

1

� �

Design state feedback K such that the quadratic criterion (9.1) with

Q ¼ 4 0
0 0

� �
and R ¼ 1 is minimized

Answer: K ¼ ½�2 �2 �.
9.2 Repeat 9.1 for a different quadratic criterion (9.1):

J ¼
Z?
0

2x1ðtÞ2 þ 2x1ðtÞx2ðtÞ þ x2ðtÞ2 þ uðtÞ2
h i

dt

Hint :

Q ¼
2 1

1 1

� �
and R ¼ 1
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9.3 Repeat 9.1 for a different quadratic criterion (9.1):

J ¼
Z?
0

yðtÞ2 þ 2uðtÞ2
h i

dt ðGiven yðtÞ ¼ CxðtÞ ¼ ½ 1 2 �xðtÞÞ

Hint : Q ¼ C0C:

9.4 Let the system ðA; B; CÞ be the same as that of 9.1 and 9.3. Design a
static output feedback gain K for the three criteria of 9.1 to 9.3,
respectively.

9.5 (a) Randomly generate five 10610 matrices. Calculate the Schur
triagularization (Step 2 of Algorithm 9.1) and notice the average
computational time.

(b) Repeat Part (a) by five 969 matrices. Compare the average
computational time with that of Part (a) to see the effect of
increasing the matrix size from 9 to 10.

(c) Repeat Part (a) by ten 565 matrices. Compare the average
computational time with that of Part (a) to see the effect of
doubling the matrix size from 5 to 10.
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10

Design of Failure Detection, Isolation, and
Accommodation Compensators

Failure detection, isolation, and accommodation has been an important
control system design problem for some years. Whereas the control systems
analyzed and designed in the previous chapters deal with minor model
uncertainty and disturbance which are less serious and occur often, the
control system of this chapter deals with major failure and disturbance
which are severe but occur rarely.

Therefore, if the normal control system is designed to have general
robustness properties regardless of specific model uncertainty and dis-
turbance, then the control system of this chapter is designed to
accommodate some specific failure situations based on their detection and
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diagnosis. It is ironic that the strength of failure signals makes their
detection and diagnosis relatively easier.

Failure detection, isolation, and accommodation problems are
specialized with regard to each specific failure situation. The results are
diverse and are summarized in survey papers such as Frank [1990] and
Gertler [1991].

This chapter introduces only a specific failure detection, isolation, and
accommodation controller and its design algorithm, which have been
published in [Tsui, 1993c, 1994b, 1997].

This controller can be designed systematically and generally, can
detect and isolate failure very quickly and specifically, can accommodate
failure very quickly, generally, and effectively, and can consider minor plant
system model uncertainty and output measurement noise. In addition, the
failure signal is generally and specifically modeled so that it corresponds to
each plant system state, and the controller has very compatible structure
with the normal dynamic output feedback compensator of the rest of this
book. Therefore, the normal and failure controllers of this book can be
designed, connected, and run coordinatively.

There are three sections in this chapter. Section 1 deals with failure
detection and isolation, which are essential to the entire controller. The
analysis and design formulation of this subject have been made before, but
their truly successful design was reported only in Tsui [1989]. Section 2
introduces adaptive failure accommodation, which is uniquely enabled by
the failure detection and isolation capability of Sec. 1. Section 3 deals with
the effect and corresponding treatment of model uncertainty and measure-
ment noise during failure detection and isolation.

10.1 FAILURE DETECTION AND ISOLATION

10.1.1 Problem Formulation and Analysis

In this book, system failure is modeled as an additional signal dðtÞ to the
plant system’s state space model (1.1a):

_xxðtÞ ¼ AxðtÞ þ BuðtÞ þ dðtÞ ð10:1Þ

We name dðtÞ ‘‘failure signal.’’ If failure is free, then dðtÞ ¼ 0 (or is
sufficiently small). If failure occurs, then some among the n elements of dðtÞ
become nonzero time functions.

Because (1.1a) is a combined description of n system states (or system
components), and each system state (or component) is described mainly by
its corresponding first-order differential equation in (1.1a) or (10.1), we
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identify each element of failure signal dðtÞ to its corresponding system state
component. For example, the nonzero occurrence of the i-th element of dðtÞ
implies the failure occurrence to the i-th system state component, which will
then be called as a ‘‘failed state.’’ The nonzero elements of dðtÞ are not
presumed to have any specific waveform. Hence this failure description is
very general.

Failure detection and isolation in this chapter are used to detect the
nonzero occurrence of dðtÞ and isolate which element of dðtÞ is nonzero. In
practice, the second purpose is much harder to achieve than the first.

Like observers, the failure detection and isolation are achieved by
using the information of plant system inputs and outputs. However, a set of
independent but coordinatively designed failure detectors are designed. The
number of failure detectors is determined by

k ¼ n

q

� �
¼ n!

ðn� qÞ!q! ð10:2Þ

where n is the plant system order, and q must be less than the number of
plant output measurements m. This requirement of q is drawn from the
design feasibility, as will be shown in Step 2 of design algorithm 10.1 in the
next subsection.

Parameter q also indicates the maximum number of simultaneous
nonzero elements of dðtÞ (or the number of simultaneous component
failures) this set of failure detectors can isolate. This failure detection and
isolation capability is achieved based on the following special properties of
the failure detectors.

Each of the k failure detectors has the following structure

_zziðtÞ ¼ FiziðtÞ þ LiyðtÞ þ TiBuðtÞ ð10:3aÞ
eiðtÞ ¼ niziðtÞ þmiyðtÞ i ¼ 1; . . . ; k ð10:3bÞ

where the single output eiðtÞ is called the ‘‘residual signal.’’ It is required that
the residual signals all be zero if failure is free ðdðtÞ ¼ 0Þ. It is also required
that for each possible set of nonzero elements of dðtÞ, a unique and preset
zero/nonzero pattern among the k residual signals be produced. Thus the
occurrence of a set of nonzero elements of dðtÞ is detected and isolated
instantly once its corresponding zero/nonzero pattern of residual signals is
formed.

To satisfy the above requirement, it is required by our design that each
of the k residual signals must be zero when its corresponding and preset set
of q state components has failed, and must be nonzero for any of the other
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state component failures. We therefore name the failure detectors of (10.3)
‘‘robust failure detectors’’ because each of them is robust (or insensitive)
toward its corresponding set of q state component failures. This way, up to q
simultaneous state component failures can always be detected and isolated.

Example 10.1

Let a plant system have four states and three output measurements ðn ¼ 4
and m ¼ 3Þ. We will analyze the following two cases for (A) q ¼ 1 and (B)
q ¼ 2ðq < m ¼ 3Þ, respectively.

(A) q ¼ 1: From (10.2), four robust failure detectors are needed.
Each failure detector must be robust to q ð¼ 1Þ state component
failure.

In Table 10.1, the symbol ‘‘X’’ represents nonzero and is
regarded as ‘‘1’’ (or ‘‘TRUE’’) in the third column of logic
operations, and ‘‘\’’ stands for the ‘‘AND’’ logic operation. It is
clear that if the residual signals behave as desired, each one of the
four state component failures can be isolated.

(B) q ¼ 2: From (10.2), six robust failure detectors are needed. Each
failure detector must be robust to q ð¼ 2Þ state component
failures.

The logic operation of Table 10.2 can isolate not only one
failure as listed, but also two simultaneous failures. For example,
the failure situation of d1ðtÞ=0 and d2ðtÞ=0 can be isolated by its
unique residual signal pattern e2 \ e3 \ e4 \ e5 \ e6.

The above design idea can easily be extended to the case where among
n state components, only p state components can fail. The only adaptation

Table 10.1 Isolation of One State Component Failure for a Four-State
Component System

Failure situation
dðtÞ ¼ ½d1 d2 d3 d4�0

Residual signals
Logic policy for failure isolatione1 e2 e3 e4

d1ðtÞ=0 0 X X X ðd1ðtÞ=0Þ ¼ e2 \ e3 \ e4

d2ðtÞ=0 X 0 X X ðd2ðtÞ=0Þ ¼ e1 \ e3 \ e4

d3ðtÞ=0 X X 0 X ðd3ðtÞ=0Þ ¼ e1 \ e2 \ e4

d4ðtÞ=0 X X X 0 ðd4ðtÞ=0Þ ¼ e1 \ e2 \ e3
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for this case is to design a combination of p over q robust failure detectors
[instead of a combination of n over q as in (10.2)].

From the above analysis, the key to the success of this failure detection
and isolation scheme is the generation of the desired zero/nonzero residual
signal patterns. This difficult yet essential requirement is analyzed by the
following theorem.

Theorem 10.1

To achieve the desired properties of robust failure detectors, each detector
parameter ðFi; Ti; Li; ni; mi; i ¼ 1; . . . ; kÞ must satisfy the following four
conditions [Ge and Fang, 1988]:

1: TiA� FiTi ¼ LiC ðFi is stableÞ
ðso that ziðtÞ ) TixðtÞ if dðtÞ ¼ 0Þ ð10:4Þ

2: 0 ¼ niTi þmiC ðso that eiðtÞ ) 0 if dðtÞ ¼ 0Þ ð10:5Þ
3: The q columns of Ti ¼ 0 ½so that eiðtÞ still ¼ 0;

even if the corresponding q elements of

dðtÞ=0� ð10:6Þ
4: Each of the remaining n� g columns of Ti=0

½so that eiðtÞ=0; if any of the remaining n� q

elements of dðtÞ=0� ð10:7Þ

The statements inside parentheses describe the physical meaning of the
corresponding condition.

Table 10.2 Isolation of Up to Two State Component Failures for a Four-
State Component System

Failure situation
dðtÞ ¼ ½d1 d2 d3 d4�0

Residual signals Logic policy for failure
isolatione1 e2 e3 e4 e5 e6

d1ðtÞ=0 0 0 0 X X X ðd1ðtÞ=0Þ ¼ e4 \ e5 \ e6
d2ðtÞ=0 0 X X 0 0 X ðd2ðtÞ=0Þ ¼ e2 \ e3 \ e6
d3ðtÞ=0 X 0 X 0 X 0 ðd3ðtÞ=0Þ ¼ e1 \ e3 \ e5
d4ðtÞ=0 X X 0 X 0 0 ðd4ðtÞ=0Þ ¼ e1 \ e2 \ e4
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Proof

Condition (10.4) and its physical meaning have been proved in Theorem 3.2.
Although the eigenvalues of Fi can be arbitrarily assigned, they should have
negative and sufficiently negative real parts to guarantee convergence and
fast enough convergence from ziðtÞ to TixðtÞ.

Condition (10.5) is obviously necessary and sufficient for eiðtÞ ) 0,
based on (10.3b) and on the assumption that ziðtÞ ) TixðtÞ and
yðtÞ ¼ CxðtÞ.

When dðtÞ=0, (10.4) implies (see the proof of Theorem 3.2)

_zziðtÞ � Ti _xxðtÞ ¼ Fi½ziðtÞ � TixðtÞ� � TidðtÞ ð10:8Þ

or

ziðtÞ � TixðtÞ ¼ �
Z t

t0

eFiðt�tÞTidðtÞ dt ð10:9Þ

where t0 is the failure occurrence time and it is assumed [from (10.4)] that
ziðt0Þ ¼ Tixðt0Þ.

From (10.9), (10.6) [TidðtÞ ¼ 0 Vt and for the q nonzero elements of
dðtÞ] guarantees that ziðtÞ still equals TixðtÞ at t > t0. Then (10.3b) and
(10.5) guarantee that eiðtÞ still equals 0 at t > t0.

Equation (10.9) also implies that if (10.7) ½or TidðtÞ=0� holds, then
ziðtÞ � TixðtÞ=0 at t > t0 generally. Consequently, (10.3b) and (10.5) imply
eiðtÞ=0 at t > t0 for most cases.

Together, the physical meanings of the four conditions imply the
satisfaction of the required properties of robust failure detectors.

10.1.2 Design Algorithm and Example

The failure detection and isolation problem having been formulated as the
four conditions of Theorem 10.1, the real challenge now is how to design the
robust failure detectors ðFi; Ti; Li; ni; mi; i ¼ 1; . . . ; kÞ which can satisfy
(or best satisfy) these four conditions.

The inspection of the four conditions (10.4)–(10.7) shows that
parameter Ti is the key parameter which uniquely appears in all four
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conditions. The solution Ti of (10.4) has already been derived in Algorithm
5.3 of Chap. 5 with many design applications as listed in Fig. 5.1. Hence the
remaining three conditions (10.5)–(10.7) can be considered as another
application of this solution of (10.4).

Based on the distinct advantages of the solution of (10.4) of Algorithm
5.3, a really systematic and general design algorithm for (10.4)–(10.7) is
developed as follows [Tsui, 1989].

Algorithm 10.1

Computation of the solution of (10.4)–(10.7)

Step 1: Set the robust failure detector orders ri ¼
n�mþ 1 ði ¼ 1; . . . ; kÞ, and select the eigenvalues of Fi

according to the corresponding proof of Theorem 10.1. Then
use Step 1 of Algorithm 5.3 to compute the basis vector
matrix Dij [Rm6n for each row tij of the solution matrix Ti of
(10.4). Thus

tij ¼ cijDij ð j ¼ 1; . . . ; ri; i ¼ 1; . . . ; kÞ ð10:10Þ

where cij [R16m are completely free.
Step 2: Compute cij so that

cij½the q columns of Dij�m6q ¼ 0 j ¼ 1; . . . ; ri;

i ¼ 1; . . . ; k
ð10:11Þ

is satisfied, where the q columns are preset for the i-th
failure detector (such as in Table 10.2). The nonzero
solution cij of (10.11) always exists because q is set to be
less than m.

Step 3: Compute (10.10). Then use Step 3 of Algorithm 5.3 [or (5.16)]
to compute Li.

Compute the failure detector parameters ni and mi to
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satisfy

½ni : mi�

ci1Di1

..

.

ciriDiri

--------
C

2666664

3777775
gri
¼ 0

gm

ð10:12Þ

Because the matrix of (10.12) has n columns, the nonzero
solution ½ni : mi� of (10.12) always exists for ri ¼ n�mþ 1.

It is obvious that (10.10)–(10.12) of the above algorithm guarantee
conditions (10.4), (10.5), and (10.6), respectively. This algorithm is based on
Algorithm 5.3 which satisfies (10.4), and then uses the remaining freedom of
(10.4) (or the remaining design freedom of the dynamic part of robust failure
detector cij) to satisfy (10.6). The design freedom (ni and mi) of the output
part of robust failure detector has been fully used in (10.12) to satisfy (10.5).

However, experience shows that for many plant systems, (10.7) cannot
be satisfied for all k failure detectors after (10.4)–(10.6) are satisfied,
especially when q is set at its maximum possible value m� 1.

The reason for this situation can be explained as follows. First of all,
(10.6) is equivalent to equation TiBi ¼ 0, where Bi is an n6q dimensional
matrix which picks q columns (out of n columns) of Ti. Secondly, because
(10.6) implies that at least q columns of Ti will be zero, (10.7) requires the
rows of Ti be linearly independent of each other. Now these two modified
requirements of (10.6) and (10.7), together with (10.4), form the design
requirement of unknown input observers which do not generally exist (see
Sec. 4.3). It is even harder for an exhaustive k combinations of failure
detectors (corresponding to k different combinations of Bi matrices) to
generally exist.

As shown in Sec. 6.2, this book has presented the first general and
systematic design solution of (4.1) and (4.3), which are equivalent to (10.4)
and (10.6). Hence Algorithm 10.1 also has generally satisfied (10.4) and
(10.6) for the first time (provided that m > q).

Fortunately, (10.4) and (10.6) are, in fact, the most important and
most difficult requirements among the four requirements of Theorem 10.1,
because (10.5) can always be satisfied by detector parameters ½ni : mi� for
sufficiently large ri [see (10.12)], while at least some nonzero columns of
(10.7) always appear automatically. Therefore, even if the k exact solutions
of (10.4) to (10.7) (for i ¼ 1; . . . ; k) do not all exist, simple adjustment can
easily be made, based on the general solution of (10.4) to (10.6) of
Algorithm 10.1, to construct a system with partially fulfilled failure
detection and isolation capability.
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Example 10.2 [Tsui, 1993c]

Let the plant system be

ðA; B; CÞ ¼

�20:95 17:35 0 0

66:53 �65:89 �3:843 0

0 1473 0 �67; 420

0 0 �0:00578 �0:05484

26664
37775;

0BBB@
1
0
0
0

2664
3775; 1 0 0 0

0 1 0 0
0 0 0 1

24 35
1CCA

This is the state space model of an actual automotive powertrain system
[Cho and Paolella, 1990]. The four states are engine speed, torque-induced
turbine speed, driving axle torque (sum of both sides), and wheel rotation
speed. The control input is an engine-indicated torque. This example will be
used throughout this chapter.

Because m ¼ 3, we let q ¼ m� 1 ¼ 2. Thus a total of k ¼ 6 robust
failure detectors will be designed by Algorithm 10.1 and according to
Table 10.2.

In Step 1, we let ri ¼ n�mþ 1 ¼ 2 and let the common dynamic
matrix of the six failure detectors be randomly chosen as

Fi ¼
�10 0

0 �20:7322

� �
; i ¼ 1; . . . ; 6

Following Step 1 of Algorithm 5.3 (5.10b), the ri ð¼ 2Þ basis vector
matrices are common to all six failure detectors as

Di1 ¼
0:3587 0:8713 0:0002 0:3348

�0:0005 0:0002 1 �0:0005
�0:9334 0:3348 �0:0005 0:1287

24 35; i ¼ 1; . . . ; 6

and

Di2 ¼
0:1741 0:9697 0 0:1715

�0:0003 0 1 �0:0003
�0:9847 0:1715 �0:0003 0:0303

24 35; i ¼ 1; . . . ; 6
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Because the given form of matrix C differs from the C of the block-
observable Hessenberg form (5.5) by a column permutation [the last n�m
column of C of (5.5) becomes the third column in this C], the Dij matrices
are computed based on the third column of matrix ðA� ljIÞ, instead of on
the last n�m column according to (5.10b).

In Step 2 of Algorithm 10.1, the solution of (10.11) corresponding to
each of the six sets of q zero-columns of Table 10.2 is:

ðc11; c12Þ ¼ ð½0 �1 0:0006�; ½0 �1 0:0003�Þ
ðc21; c22Þ ¼ ð½0:0015 1 0�; ½0:0015 1 0�Þ
ðc31; c32Þ ¼ ð½0:9334 0 0:3587�; ½0:9847 0 0:1741�Þ
ðc41; c42Þ ¼ ð½�0:3587 0:0005 0:9334�; ½�0:1741 0:0003 0:9847�Þ
ðc51; c52Þ ¼ ð½�0:3587 0:0005 0:9334�; ½�0:1741 0:0003 0:9847�Þ
ðc61; c62Þ ¼ ð½�0:3587 0:0005 0:9334�; ½�0:1741 0:0003 0:9847�Þ

The inspection of the above result shows that the last three failure detectors
are redundant and can therefore be simplified to only one. So only four
failure detectors ði ¼ 1; . . . ; 4Þ will be computed.

In Step 3, compute Ti according to (10.10) ði ¼ 1; . . . ; 4Þ. Then the
corresponding Li can be computed based on all columns of Eq. (10.4) except
the third column ði ¼ 1; . . . ; 4Þ (see the explanation before the result of Step
2). The result is:

T1 ¼
0 0 0:0006 1

0 0 0:0003 1

� �
L1 ¼

0 0:8529 �29:091

0 0:3924 3:715

� �

T2 ¼ ½ 0 0:0015 0 �1 � L2 ¼ ½ 0:1002 �0:0842 �9:9451 �

T3 ¼
0 0:9334 0:3587 0

0 0:9847 0:1741 0

� �
L3 ¼

62 476 �24; 185

66 213 �11; 740

� �
and

T4 ¼ ½�1 �0 0 �0 � L4 ¼ ½ 10:95 �17:35 0 �

In the above result, the two rows of matrix Ti ði ¼ 2; 4Þ are the same. Hence
we have adjusted ri ¼ 1;Fi ¼ �10, and parameters ½Ti : Li� as the first row
of their original values, for i ¼ 2 and 4, respectively.

It can be verified that (10.4) and (10.6) are satisfied.
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In Step 3 of Algorithm 10.1, we solve (10.12) such that

½n1 : m1� ¼ ½ 0:3753 �0:8156: 0 0 0:4403 �
½n2 : m2� ¼ ½ 0:7071: 0 �0:0011 0:7071 �
½n3 : m3� ¼ ½ 0:394 �0:8116: 0 0:4314 0 �

and

½n4 : m4� ¼ ½ 1 : 1 0 0 �

It can be verified that (10.5) is also satisfied with this set of parameters.
However, condition (10.7) of Theorem 10.1 is satisfied only for

i ¼ 1; 2; 3. For i ¼ 4, there are three zero columns in matrix Ti, and the
requirement (10.7) of Theorem 4.1 that there are n� q ð¼ 2Þ nonzero
columns in Ti is not met. As a result, the desired properties of Table 10.2
cannot be fully achieved. Instead, we simply adjust our design and Table 10.2
to have the following partially fulfilled failure isolation capability.

It can be easily verified from Table 10.3 that the three pairs of
simultaneous state component failures (d1 and d2; d1 and d3, and d1 and d4)
can be isolated by the logic operation of Table 10.3. These three failure
situations are isolated by e2 \ e3 \ e4; e1 \ e3 \ e4, and e1 \ e2 \ e4, respec-
tively. However, the other three possible pairs of two simultaneous failures
(d2 and d3, d2 and d4, and d3 and d4) cannot be isolated. In these three cases,
e4 is zero, but all other three residual signals are nonzero. Hence one can
learn from this residual signal pattern only that all elements of dðtÞ except
d1ðtÞ can be nonzero, but one cannot isolate which two state failures among
the three are occurring.

Considering the difficulty of instant isolation of all possible pairs of
two simultaneous unknown state component failures of this four-state
system, the above failure isolation capability of Table 10.3, though not as
good as Table 10.2, is still remarkable.

Table 10.3 Failure Isolation of Example 10.2

Failure situation
dðtÞ ¼ ½d1 d2 d3 d4�0

Residual signals
Logic policy for failure isolatione1 e2 e3 e4

d1ðtÞ=0 0 0 0 X ðd1ðtÞ=0Þ ¼ e4

d2ðtÞ=0 0 X X 0 ðd2ðtÞ=0Þ ¼ e2 \ e3

d3ðtÞ=0 X 0 X 0 ðd3ðtÞ=0Þ ¼ e1 \ e3

d4ðtÞ=0 X X 0 0 ðd4ðtÞ=0Þ ¼ e1 \ e2
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The above failure isolation capability of Table 10.3 is still better than
that of Table 10.1, where q is set to be 1, because the system of Table 10.3
can isolate three additional pairs of two simultaneous failures, whereas the
system of Table 10.1 cannot. Hence a large q ð< mÞ may be generally
recommended even though the isolation of all situations of q simultaneous
state component failures may be impossible. The value of q should also be
chosen such that k of (10.2) (and the amount of failure detector design
freedom) is maximized.

10.2 ADAPTIVE STATE FEEDBACK CONTROL FOR FAILURE
ACCOMMODATION [Tsui, 1997]

The purpose of detecting and diagnosing disease is to apply the
corresponding and appropriate cure to that disease. Likewise, the purpose
of failure detection and isolation is to apply the corresponding and
appropriate control to that failure situation. Conversely, a really effective
failure accommodation control must be adaptive according to each failure
situation.

The failure accommodation control of this chapter is realized by the
feedback of two signals—the states ziðtÞ of the robust failure detectors ði ¼
1; . . . ; kÞ and the plant system output measurements. The feedback gain is
adaptive based on the particular and isolated failure situation. We therefore
call this control ‘‘adaptive.’’ It is obvious that the static feedback gains of
this chapter can be most easily and quickly adapted, in either design or
implementation.

From Theorem 10.1, the failure detector states ziðtÞ should equal
TixðtÞ ði ¼ 1; . . . ; kÞ before failure occurs. According to the design of robust
failure detectors, when q or less than q state components fail, there is at least
one robust failure detector whose state [say ziðtÞ] still equals TixðtÞ. In
addition, some elements of the plant system output measurement yðtÞ can
also be robust to (or independant of) the failed system states. Both signals
are reliable and can be used to control and accommodate the failure.

As discussed in Sec. 4.1, the static gains on ziðtÞ and yðtÞ can be
considered as state feedbacks (or constrained state feedbacks). We therefore
call the failure accommodation control of this chapter ‘‘adaptive state
feedback control.’’ From the argument of Subsection 2.2.1, the state
feedback control is the most powerful among the general forms of control.

This control is uniquely enabled by the information (in both failure
isolation decision and plant system state estimation) provided by the failure
detection and isolation system of Sec. 10.1.

There are distinct advantages of this failure control scheme.
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(a) It is very effective. First of all, the state feedback control is most
generally powerful. Secondly, this control is specifically adapted
toward each isolated failure situation. Finally, this control is very
timely. The failure detection and isolation is instant when the
zero/nonzero pattern of residual signals is formed upon failure
occurrence. The generation of the corresponding control signal,
or the switching on of the corresponding static gains on the
available signals zðtÞ and yðtÞ, can also be instant.

(b) It can be very easily and simply designed and implemented. The
static gains can be designed off-line and can be switched around
on-line without worrying about the initial conditions and the
transients of the controller.

Finally, it is obvious that this adaptive failure control scheme is
uniquely enabled by the failure isolation capability of Sec. 10.1.

Example 10.3

Based on the design result of Example 10.1, the ten isolatable failure
situations and their respective unfailed plant system states and feedback
control signals are listed in Table 10.4.

In Table 10.4, the feedback gain Ki is designed based on the
understanding of the corresponding failure situation Si ði ¼ 1; . . . ; 10Þ.
The signal yiðtÞ, which must be robust to the failed system states of the
corresponding failure situation Si ði ¼ 1; . . . ; 10Þ, can be wholly, partly, or

Table 10.4 Ideal Adaptive Failure Control for a Fourth-Order System with
Up to Two Simultaneous State Component Failures

Failure situation Unfailed states Control signal

S1 :d1ðtÞ=0 x2ðtÞ; x3ðtÞ; x4ðtÞ K1½z01 : z02 : z03 : y01�
0

S2 :d2ðtÞ=0 x1ðtÞ; x3ðtÞ; x4ðtÞ K2½z01 : z04 : z05 : y02�
0

S3 :d3ðtÞ=0 x1ðtÞ; x2ðtÞ; x4ðtÞ K3½z02 : z04 : z06 : y03�
0

S4 :d4ðtÞ=0 x1ðtÞ; x2ðtÞ; x3ðtÞ K4½z03 : z05 : z06 : y04�
0

S5 :d1ðtÞ=0;d2ðtÞ=0 x3ðtÞ; x4ðtÞ K5½z01 : y05�
0

S6 :d1ðtÞ=0;d3ðtÞ=0 x2ðtÞ; x4ðtÞ K6½z02 : y06�
0

S7 :d1ðtÞ=0;d4ðtÞ=0 x2ðtÞ; x3ðtÞ K7½z03 : y07�
0

S8 :d2ðtÞ=0;d3ðtÞ=0 x1ðtÞ; x4ðtÞ K8½z04 : y08�
0

S9 :d2ðtÞ=0;d4ðtÞ=0 x1ðtÞ; x3ðtÞ K9½z05 : y09�
0

S10 :d3ðtÞ=0;d4ðtÞ=0 x1ðtÞ; x2ðtÞ K10½z06 : y010�
0
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not part of the output yðtÞ. The actual design of Ki is introduced generally in
Chaps 8 and 9.

In actual practice, all six robust failure detectors run simultaneously
and all six detector states are available all the time (so are the plant system
output measurements). Once a failure situation Si is detected and isolated (it
must be one of the ten in Table 10.4), the corresponding control signal (with
gain Ki according to Table 10.4) will automatically be switched on.

Example 10.4 Failure Accommodation for the System of
Example 10.2

The failure isolation capability of Table 10.2 is not as fully achievable in
Example 10.2 as in Example 10.1. For such cases, Table 10.4 (which
corresponds to Example 10.1 and Table 10.2) must be adjusted as follows.

First, all redundant failure detectors and their respective states z4; z5,
and z6 are reduced to z4 only.

Second, the failure situations Si ði ¼ 8; 9; 10Þ cannot be isolated and
hence cannot be specifically controlled.

Third, for the specific case of Example 10.2, the yiðtÞ signals of
Table 10.4 ði ¼ 1; . . . ; 7Þ can be specified as follows:

y1ðtÞ ¼ ½ y2ðtÞ y3ðtÞ �0 y2ðtÞ ¼ ½ y1ðtÞ y3ðtÞ �0

y3ðtÞ ¼ yðtÞ y4ðtÞ ¼ ½ y1ðtÞ y2ðtÞ �0

y5ðtÞ ¼ y3ðtÞ y6ðtÞ ¼ ½ y2ðtÞ y3ðtÞ �0 y7ðtÞ ¼ y2ðtÞ

In making the actual failure accommodation control signal, we also
make sure that the signals used to produce this control are linearly
independent (or not redundant) of each other. When two signals are
redundant, the output measurement signals ½yiðtÞ

0
s� should be used in

priority against the failure detector states ½ziðtÞ0s� because the former are
more reliable as linear combinations of plant system states. For example,
z4ðtÞ ¼ T4xðtÞ is linearly dependent on y1ðtÞ and will therefore not be used if
y1ðtÞ is used.

Finally, if there are enough unfailed plant system states available for
failure control, an additional adjustment can also be made to Table 10.4 as
follows. This adjustment can be most important.

Among the unfailed plant system states some may be more strongly
influenced by the failed states than others. These unfailed plant system states
are therefore less reliable than the others for failure control and should not
be used to generate failure accommodation control signals.
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This idea can be easily implemented because the coupling between the
system states is very clearly revealed by the system’s dynamic matrix A. For
example, the magnitude of the element aij of matrix A indicates how
strongly state xi is influenced by state xj.

Example 10.5

In the completely adjusted failure accommodation control for Example 10.2,
where

A ¼

�20:95 17:35 0 0
66:53 �65:89 �3:843 0
0 1437 0 �67; 420
0 0 �0:00578 �0:0548

2664
3775

Matrix A indicates, for example, that state x3 is strongly influenced by state
x4 because ja34j ¼ 67; 420 is large, while state x4 is weakly influenced by state
x3 because ja43j ¼ 0:00578 is small (matrix A is not symmetrical).

Based on the above understanding, we list the specific failure control
for the plant system of Example 10.2 in the following. We use three different
thresholds (10, 100, and 1) to judge whether a state is strongly influenced by
another. For example, if the threshold is 10 in Example 10.2, then matrix A
indicates that state x1 is strongly influenced by x2 ðja12j ¼ 17:35 > 10Þ, while
x2 is weakly influenced by x3 ðja23j ¼ 3:843 < 10Þ. Thus for the three
different thresholds, there are three corresponding tables (Table 10.5 to
10.7) which are adjusted from Table 10.4.

In Tables 10.5 to 10.7, the most used information for failure control is
from yðtÞ and one may wonder what is the use of the failure detector. The
cause of this fact is that in this particular example m is large compared to n.
In more challenging problems where m is small compared to n, the
information of zðtÞ will be the main source for failure control.

In the failure situation S7 of Table 10.5, state x2 is considered weakly
influenced by the failed states (x1 and x4) even though the actual influence
from x1 is still quite strong ðja21j ¼ 66:53 > 10Þ. This is because the only
other unfailed state x3 is even more strongly influenced by the failed state x4.

The difference between Table 10.6 and Table 10.5 is for failure
situations S1, S2, and S6. Table 10.6 adds x2, x1, and x2 as states which are
weakly influenced by the failed states for these three failure situations,
respectively. This is because the corresponding elements of these states in
matrix A (66.53, 17.35, and 66.53, respectively) are less than 100. Thus the
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control signals for these failure situations are based on more information,
although this additional information is less reliable.

The difference between Table 10.7 and Table 10.5 is at failure situation
S3, where state x2 is no longer considered weakly influenced by the failed
state ðx3Þ in Table 10.7. This is because the corresponding element
ja23j ¼ 3:843 > 1.

Among the seven isolatable failure situations, S7 has the least reliable
information according to our formulation.

Table 10.5 Failure Accommodation Control for Example 10.2
(With Threshold for State Coupling Strength Set as 10)

Failure situation
Unfailed

system states

States weakly
Influenced by
failed states

Adaptive failure
control signal

S1 :d1 6¼ 0 x2; x3; x4 x3; x4 K1½z 01 : y3�
0

S2 :d2 6¼ 0 x1; x3; x4 x4 K2y3ðtÞ
S3 :d3 6¼ 0 x1; x2; x4 x1; x2; x4 K3yðtÞ0
S4 :d4 6¼ 0 x1; x2; x3 x1; x2 K4½y1 : y2�0
S5 :d1 6¼ 0;d2 6¼ 0 x3; x4 x4 K5y3ðtÞ
S6 :d1 6¼ 0;d3 6¼ 0 x2; x4 x4 K6y3ðtÞ
S7 :d1 6¼ 0;d4 6¼ 0 x2; x3 x2 K7y2ðtÞ

Table 10.6 Failure Accommodation Control for Example 10.2
(With Threshold for State Coupling Strength Set as 100)

Failure situation
Unfailed

system states

States weakly
influenced by
failed states

Adaptive failure
control signal

S1 :d1 6¼ 0 x2; x3; x4 x2; x3; x4 K1½z 01 : y2 : y3�
0

S2 :d2 6¼ 0 x1; x3; x4 x1; x4 K2½y1 : y3�0
S3 :d3 6¼ 0 x1; x2; x4 x1; x2; x4 K3 : yðtÞ0
S4 :d4 6¼ 0 x1; x2; x3 x1; x2 K4½y1 : y2�0
S5 :d1;d2 6¼ 0 x3; x4 x4 K5y3ðtÞ
S6 :d1;d3 6¼ 0 x2; x4 x2; x4 K6½y2 : y3�0
S7 :d1;d4 6¼ 0 x2; x3 x2 K7y2ðtÞ
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10.3 THE TREATMENT OF MODEL UNCERTAINTY AND
MEASUREMENT NOISE [Tsui, 1994b]

In the previous two sections, a complete failure detection, isolation, and
accommodation control system is established. This section discusses the
effect and the corresponding treatment of plant system model uncertainty
and output measurement noise on the failure detection and isolation part of
that system.

To do this, we need to analyze the overall feedback system. It is
striking that robust failure detectors ðFi; Ti; Li; i ¼ 1; . . . ; kÞ and failure
accommodation control of Tables 10.4–10.7 are compatible with the
feedback compensator ðF0;T0;L0Þ (3.16) in structure. As a result, the
normally (assuming failure-free) designed observer feedback compensator
(3.16) of Chaps 5 through 9, and the failure detection, isolation, and
accommodation system of the previous two sections can be connected in
parallel and implemented coordinatively. The combined system can be
illustrated in Fig. 10.1, which shows a combined system with a normal
feedback compensator and a failure detection, isolation, and accommoda-
tion compensator,

where

rðtÞ 4¼ external reference input
dðtÞ 4¼ failure signal
nðtÞ 4¼ output measurement noise signal with n as the upper bound of

its rms value
CðsI � AÞ�1DðsÞ 4¼ plant system model uncertainty with D as the

upper bound of scalar function DðsÞ

Table 10.7 Failure Accommodation Control for Example 10.2
(With Threshold for State Coupling Strength set as 1)

Failure situation
Unfailed

system states

States weakly
influenced by
failed states

Adaptive failure
control signal

S1 :d1 6¼ 0 x2; x3; x4 x3; x4 K1½z01 :y3�
0

S2 :d2 6¼ 0 x1; x3; x4 x4 K2y3ðtÞ
S3 :d3 6¼ 0 x1; x2; x4 x1; x4 K3½y1 : y3�0
S4 :d4 6¼ 0 x1; x2; x3 x1; x2 K4½y1 : y2�0
S5 :d1;d2 6¼ 0 x3; x4 x4 K5y3ðtÞ
S6 :d1;d3 6¼ 0 x2; x4 x4 K6y3ðtÞ
S7 :d1;d4 6¼ 0 x2; x3 x2 K7y2ðtÞ
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and for k ¼ n!=½ðn� qÞ!q!�ðq ¼ m� 1Þ of (10.2),

eðtÞ 4
¼

½e1ðtÞ � � � ekðtÞ�0 4¼ residual signal vector

zðtÞ 4
¼

½z0ðtÞ0 : z1ðtÞ0 : � � � : zkðtÞ0�0

F 4
¼

diagfF0;F1; . . . ;Fkg

N 4
¼

diagfn1; . . . ; nkgðn0 ¼4 0Þ

and

T 4
¼

T0

T1

:

Tk

26664
37775; L 4

¼

L0

L1

:

Lk

26664
37775; M 4

¼

m1

:

mk

264
375ðm0 4

¼
0Þ

The feedback gain ½KZ : Ky� is normally applied to z0ðtÞ and yðtÞ only,
but will be adapted when failure is detected and isolated (see Tables 10.4–
10.7 for example). Thus ½KZ : Ky� is modeled as the gain to the entire zðtÞ
and �yyðtÞ signals.

Because failure detection and isolation is achieved based on the zero/
nonzero pattern of the residual signals (see Tables 10.1–10.3), the effect of
model uncertainty DðsÞ and measurement noise nðtÞ is reflected in the zero/
nonzero determination of these residual signals.

To analyze this effect, we must first derive the transfer function
relationship between DðsÞ;NðsÞ;RðsÞ; and DðsÞ to EðsÞ, where NðsÞ;

Figure 10.1 Combined system with a normal feedback compensator and a
failure detection, isolation, and accommodation compensator.
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RðsÞ;DðsÞ; and EðsÞ are the Laplace transforms of nðtÞ; rðtÞ; dðtÞ; and eðtÞ,
respectively. In addition, we also let XðsÞ;UðsÞ;YðsÞ; and ZðsÞ be the
Laplace transforms of their respective time signals xðtÞ; uðtÞ; yðtÞ; and zðtÞ.

Theorem 10.2 [Tsui, 1993c]

For small enough DðsÞ, the transfer functions from DðsÞ;NðsÞ;RðsÞ, and
DðsÞ to EðsÞ are:

EðsÞ ¼ HerðsÞDðsÞRðsÞ þHedðsÞ½1þ DðsÞ�DðsÞ þHenðsÞNðsÞ ð10:13Þ

4
¼

ErðsÞ þ EdðsÞ þ EnðsÞ ð10:14Þ

where the transfer functions HerðsÞ;HedðsÞ; and HenðsÞ are fully determined
by the parameters of Fig. 10.1.

Proof

Let GoðsÞ 4¼ CðsI � AÞ�1 and GcðsÞ 4¼ ðsI � FÞ�1. Then from Fig. 10.1,

�YYðsÞ ¼ GoðsÞ½1þ DðsÞ�½BUðsÞ þDðsÞ� þNðsÞ ð10:15Þ
UðsÞ ¼ KZZðsÞ þ Ky

�YYðsÞ þ RðsÞ ð10:16Þ
ZðsÞ ¼ GcðsÞ½TBUðsÞ þ L �YYðsÞ� ð10:17aÞ

4
¼

GuðsÞUðsÞ þ GyðsÞ �YYðsÞ ð10:17bÞ

and

EðsÞ ¼ NZðsÞ þ M �YYðsÞ ð10:18Þ

Substituting (10.16) into (10.17b), then

ZðsÞ ¼ ½I � GuðsÞKZ��1f½GuðsÞKy þ GyðsÞ� �YYðsÞ þ GuðsÞRðsÞg ð10:19aÞ
4
¼

HzyðsÞ �YYðsÞ þHzrðsÞRðsÞ ð10:19bÞ
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Now substituting (10.19b) into (10.16) and then into (10.15),

�YYðsÞ ¼ fI � GoðsÞ½1þ DðsÞ�B½KZHzyðsÞ þ Ky�g�1

fGoðsÞ½1þ DðsÞ�½BðKZHzrðsÞ þ IÞRðsÞ þDðsÞ� þNðsÞg

for small enough D [Emami-Naeini and Rock, 1988],

&fI � GoðsÞB½KZHzyðsÞ þ Ky�g�1

fGoðsÞ½1þ DðsÞ�½BðKZHzrðsÞ þ IÞRðsÞ þDðsÞ� þNðsÞg ð10:20aÞ
4
¼

HyrðsÞ½1þ DðsÞ�RðsÞ þHydðsÞ½1þ DðsÞ�DðsÞ þHynðsÞNðsÞ ð10:20bÞ

Finally, substituting (10.19b) into (10.18),

EðsÞ ¼ ½NHzyðsÞ þM� �YYðsÞ þNHzrðsÞRðsÞ
ðBy 10:20bÞ: ¼ ½NHzyðsÞ þM�HyrðsÞ½1þ DðsÞ�RðsÞ þNHzrðsÞRðsÞ

þ ½NHzyðsÞ þM�HydðsÞ½1þ DðsÞ�DðsÞ
þ ½NHzyðsÞ þM�HynðsÞNðsÞ

ðBy 10:5Þ: ¼ ½NHzyðsÞ þM�HyrðsÞDðsÞRðsÞ
þ ½NHzyðsÞ þM�HydðsÞ½1þ DðsÞ�DðsÞ
þ ½NHzyðsÞ þM�HynðsÞNðsÞ ð10:21Þ

4
¼

HerðsÞDðsÞRðsÞ þHedðsÞ½1þ DðsÞ�DðsÞ

þHenðsÞNðsÞ ð10:13Þ

It is useful to notice that a moment before the failure occurrence,

UðsÞ ¼ K0Z0ðsÞ þ Ky
�YYðsÞ þ RðsÞ

¼ ½K0 : 0 . . . 0�ZðsÞ þ Ky
�YYðsÞ þ RðsÞ

ð10:22Þ

Let us partition GuðsÞ and GyðsÞ of (10.17) such that

GuðsÞ 4¼ ½Gu0ðsÞ0 : . . . : GukðsÞ0�0

and

GyðsÞ 4¼ ½Gy0ðsÞ0 : . . . : GykðsÞ0�0 ð10:23aÞ
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then

GuiðsÞ ¼ ðsIri � FiÞ�1TiB; i ¼ 0; 1; . . . ; k ð10:23bÞ
GyiðsÞ ¼ ðsIri � FiÞ�1Li; i ¼ 0; 1; . . . ; k ð10:23cÞ

Based on (10.22) and (10.23), in (10.19), the term

½I � GuðsÞKZ��1GuðsÞ ¼

Ir0 � Gu0ðsÞK0 0 . . . 0

�Gu1ðsÞK0 Ir1
. .
.

:

: 0 . .
.

0
�GukðsÞK0 Irk

266664
377775
�1

Gu0ðsÞ
Gu1ðsÞ

..

.

GukðsÞ

26664
37775

Now each block of HzyðsÞ of (10.19b)

HzyðsÞ 4¼ ½Hzy0ðsÞ0 : Hzy1ðsÞ0 : . . . : HzykðsÞ0�0 ð10:24aÞ

can be separately expressed as

HzyiðsÞ

¼
½Ir0 � Gu0ðsÞK0��1½Gu0ðsÞKy þ Gy0ðsÞ�; if i ¼ 0 ð10:24bÞ
GuiðsÞK0½Ir0 � Gu0ðsÞK0��1½Gu0ðsÞKy þ Gy0ðsÞ�
þGuiðsÞKy þ GyiðsÞ if i 6¼ 0 ð10:24cÞ

8><>:
Equation (10.24) implies that each of the k rows of the term NHzyðsÞ þM of
HerðsÞ;HedðsÞ; and HenðsÞ of (10.21) and (10.13) can be separately and
explicitly expressed. Thus each of the k residual signals has its own explicit
transfer function from RðsÞ;DðsÞ; and NðsÞ.

A distinct and important feature of the normal feedback compensator
of this book is T0B ¼ 0. Thus from (10.23b) Gu0ðsÞ ¼ 0, and the expression
of HzyðsÞ of (10.24) can be further greatly simplified as

HzyiðsÞ

¼ Gy0ðsÞ ¼ ðsIr0 � F0Þ�1L0 if i ¼ 0 ð10:25aÞ
GuiðsÞK0Gy0ðsÞ þ GuiðsÞKy þ GyiðsÞ if i 6¼ 0 ð10:25bÞ

(

Conversely, this simplification adds another significant advantage to the
new design approach of this book.
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After the transfer function relationships between EðsÞ and its source
signals RðsÞ;DðsÞ; and NðsÞ are established, we can now have the explicit
effect of model uncertainty DðsÞ and measurement noise NðsÞ on EðsÞ, and
can devise the corresponding treatment of DðsÞ and NðsÞ.

Theorem 10.2 shows that the effect of model uncertainty and of
measurement noise, and the effect of failure can be separated in different
terms. Thus in a failure-free situation [DðsÞ ¼ 0 or is very minor] the effect
of model uncertainty and measurement noise can be explicitly expressed as

EðsÞ ¼ ErðsÞ þ EnðsÞ ð10:26Þ

We therefore set the threshold of nonzero eðtÞ as the largest possible value of
(10.26):

Jth 4
¼

max kErðsÞ þ EnðsÞk4 max
o

kErðjoÞk þmax
o

kEnðjoÞk

4 max
o

fs½HerðjoÞ�kRðjoÞkgD

þmax
o

fs½HenðjoÞ�gn ð10:27Þ

where s stands for the largest singular value.
Although the Jth is a threshold on EðjoÞ in the frequency domain, it is

directly related to eðtÞ by the Parseval theorem. For example, according to
Emami–Naeini and Rock [1988], Jth of (10.27) can be applied to the rms
value of e(t) with ‘‘window’’ length t:

kekt ¼
1

t

� � Zt0þt

t0

eðtÞ0eðtÞ dt

24 351=2

ð10:28Þ

If kekt < Jth, then the nonzero e(t) is considered to be caused by the model
uncertainty DðsÞ [with input RðsÞ] and noise NðsÞ only, but not by failure
DðsÞ. Only when kekt > Jth can we consider that the nonzero eðtÞ is caused
by failure DðsÞ. It is reasonable from (10.27) that the more severe the model
uncertainty D and measurement noise n, the higher the threshold Jth. The
actual value of t should be adjusted in practice [Emami–Naeini and Rock,
1988].

Another important technical adjustment is to test each residual signal
eiðtÞ ði ¼ 1; . . . ; kÞ. This will greatly improve the test resolution because
both Jthi and keik should be much lower than Jth and kek, respectively.
Fortunately, based on (10.24), the test operation (10.27) and (10.28) can be
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directly adjusted to

Jthi ¼max
o

fkHeriðjoÞkkRðjoÞkgDþmax
o

fkHeniðjoÞkgn;

i ¼ 1; . . . ; k ð10:29Þ

and

keikt ¼
1

t

� � Zt0þt

t0

e2i ðtÞ dt

24 351=2

; i ¼ 1; . . . ; k ð10:30Þ

To summarize, this treatment of model uncertainty and measurement
noise is very general and simple. This treatment is again uniquely enabled by
the failure detection and isolation scheme of this book, which needs to check
only the zero/nonzero pattern of the residual signals.

After the threshold Jth for the residual signal eðtÞ is established, it is
useful to establish the theoretical lower bound of the failure signal strength
for guaranteed detection. For simplicity of presentation, this bound will be
established on Jth instead of the k individual Jthi’s. Obviously, this lower
bound must cause kEðsÞk to exceed the threshold Jth, or

min kEðsÞ ¼ EdðsÞ þ ErðsÞ þ EnðsÞk
> Jth 4

¼
max kErðsÞ þ EnðsÞk

ð10:31Þ

Theorem 10.3

For sufficiently strong failure such that Emami–Naeini and Rock [1988]

min kEdðsÞk > max kErðsÞ þ EnðsÞk ð10:32Þ

the detectable failure DðsÞ must satisfy

kHedðsÞDðsÞk >
2Jth

ð1� DÞ
ð10:33Þ
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Proof

From (10.32),

min kEðsÞ ¼ EdðsÞ þ ErðsÞ þ EnðsÞk
> min kEdðsÞk �max kErðsÞ þ EnðsÞk

Hence the inequality that

min kEdðsÞk �max kErðsÞ þ EnðsÞk > Jthð 4¼ max kErðsÞ þ EnðsÞkÞ

or

min kEdðsÞk > 2max kErðsÞ þ EnðsÞk 4
¼

2Jth ð10:34Þ

can guarantee the detectable requirement (10.31).
From (10.21)

kEdðsÞk ¼ kHedðsÞDðsÞ þ DðsÞHedðsÞDðsÞk

Hence from DðsÞ5 1,

kEdðsÞk5ð1� DÞkHedðsÞDðsÞk ð10:35Þ

The inequalities (10.35) and (10.34) together prove (10.33).

Guaranteeing failure detection while also guaranteeing that all effects
of plant system model uncertainty and measurement noise are not
misinterpreted as the effects of failure, is almost impossible in practice.
Reflected in Theorem 10.3, the requirement (10.33) is almost impossible to
satisfy generally. For example, HediðsÞ is most often a row vector. Thus the
theoretical minimal value of the left-hand side of (10.33) is 0 and hence
cannot satisfy (10.33).

Nonetheless, Theorem 10.3 is still a simple and general theoretical
result. Its requirement (10.33) indicates that the larger the model uncertainty
D and the measurement noise n, and the higher the threshold Jth, the more
difficult for DðsÞ to satisfy (10.33) (or to be guaranteed detectable). This
interpretation is certainly reasonable.
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Example 10.6

A complete normal feedback control and failure accommodation control
design (with treatment of model uncertainty and measurement noise)
follows from Example 10.2.

Let us first design a normal feedback compensator (4.10) for the plant
system of Example 10.2, with order r0 ¼ n�m ¼ 1:

ðF0; T0; L0; K0; KyÞ ¼ ð�21:732; ½ 0 5:656 �0:0003 1 �;
½ 376:3 �250:2 41:9 �; 10;000;
½ 70:9 �56;552:3 �13;393 �Þ

where F0 is arbitrarily assigned with sufficiently negative real part (see the
proof of Theorem 3.2), T0 and L0 are designed to satisfy (4.1) and (4.3)
ðT0B ¼ 0Þ, and ½K0 : Ky� is designed such that the corresponding control

uðtÞ ¼ K0z0ðtÞ þ KyyðtÞ
¼ ½K0 : Ky�½T 0

0 : C
0�0xðtÞ ðat steady stateÞ

¼ ½ 70:9 7:7 �3 �3393 �xðtÞ

can assign eigenvalues � 2:778+ j14:19 and � 5:222+ j4:533 to the
feedback system dynamic matrix Aþ B½K0 : Ky�½T 0

0 : C
0�0. This set of

eigenvalues guarantee the fastest settling time for step response of the
corresponding system [D’Azzo and Houpis, 1988].

Because T0B ¼ 0, we use (10.25a) to compute

Hzy0ðsÞ ¼ ðsIr0 � F0Þ�1L0

¼ ½ 376:3 � 250:2 41:9 �
ðsþ 21:732Þ

ð10:36Þ

Because the two terms of (10.29) are mathematically quite compatible,
we let the first term be zero [or let the model uncertainty DðsÞ be 0] to
simplify the presentation. Then (10.29) only has its second term left

Jthi ¼ max
o

fkHeniðjoÞkgn; i ¼ 1; . . . ; 4 ð10:37Þ

which will be computed in the following, based on the result of Example
10.2.
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Because T0B ¼ 0, we use (10.25b) to compute

Hzy1ðsÞ ¼
0 0:8529=ðsþ 10Þ �29:091=ðsþ 10Þ
0 0:3924=ðsþ 21:732Þ 3:715=ðsþ 21:732Þ

� �

Hzy2ðsÞ ¼ ½ 0:1002 �0:0842 �9:9451 �=ðsþ 10Þ

Hzy3ðsÞ ¼
62=ðsþ 10Þ 476=ðsþ 10Þ � 24;185=ðsþ 10Þ

66=ðsþ 21:732Þ 213=ðsþ 21:732Þ � 11;740=ðsþ 21:732Þ

� �

Hzy4ðsÞ ¼ ½�59:96 56;535 13;393 �=ðsþ 10Þ

Substituting HzyðsÞ into the first part of HenðsÞ of (10.13), we have

NHzyðsÞ þM ¼

0 3:754
ðsþ10Þðsþ21:732Þ

0:44s2þ0:0217s�171:88
ðsþ10Þðsþ21:732Þ

0:07085
ðsþ10Þ

�0:0011s�0:07054
ðsþ10Þ

0:7071sþ0:039
ðsþ10Þ

�29:14s�4:782
ðsþ10Þðsþ21:732Þ

0:4314s2þ28:36sþ2441
ðsþ10Þðsþ21:732Þ

�0:706s�111;801:9
ðsþ10Þðsþ21:732Þ

s�49:95
ðsþ10Þ

56;535
ðsþ10Þ

13;393
ðsþ10Þ

2666666664

3777777775
The second part of HenðsÞ of (10.13), which equals HynðsÞ of (10.20), is

computed in the following. From (10.36),

KZHzyðsÞ þ Ky ¼ K0Hzy0ðsÞ þ Ky

¼ 70:9sþ 3;764;541 �56;552s� 3;731; 006 �13;393sþ 127;941

sþ 21:732

4
¼

½ b1ðsÞ b2ðsÞ b3ðsÞ �

Let

CðsI � AÞ�1B 4
¼

a1ðsÞ
a2ðsÞ
a3ðsÞ

264
375

¼
s3 þ 65:945s2 þ 5274s� 25;411

66:53s2 þ 3:6485s� 25;971

567:4

264
375,dðsÞ
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where

dðsÞ ¼ detðsI � AÞ
¼ ðs2 þ 66:07sþ 4145Þðs� 0:9076Þðsþ 21:732Þ

Now

HynðsÞ ¼ fI � CðsI � AÞ�1B½KzHzyðsÞ þ Ky�g�1

¼ 1�
a1ðsÞ
a2ðsÞ
a3ðsÞ

264
375½ b1ðsÞ b2ðsÞ b3ðsÞ �

8><>:
9>=>;

�1

¼

1� a2ðsÞb2ðsÞ � a3ðsÞb3ðsÞ a1ðsÞb2ðsÞ a1ðsÞb3ðsÞ
a2ðsÞb1ðsÞ 1� a1ðsÞb1ðsÞ � a3ðsÞb3ðsÞ a2ðsÞb3ðsÞ
a3ðsÞb1ðsÞ a3ðsÞb2ðsÞ 1� a1ðsÞb1ðsÞ � a2ðsÞb2ðsÞ

264
375

1� a1ðsÞb1ðsÞ � a2ðsÞb2ðsÞ � a3ðsÞb3ðsÞ

Finally, the Jthi of (10.37) are computed for the four failure detectors,
i ¼ 1; . . . ; 4 (Table 10.8).

We have completely designed a normal (failure-free) feedback
compensator and a failure detection, isolation, and accommodation system
for the plant system of Example 10.2. The second system can treat plant
system output measurement noise with given upper bound n. The treatment
of plant system model uncertainty is very similar to that of the plant output
measurement noise.

This example also shows that the design results of this book—the
normal (failure-free) feedback compensator of Chaps 5 through 9—and the
failure detection, isolation, and accommodation system of this chapter can
be coordinatively designed and implemented.

Table 10.8 Threshold Treatment of Measurement Noise of the Four
Robust Failure Detectors of Example 10.2 and Fig. 10.1

For e1ðtÞ e2ðtÞ e3ðtÞ e4ðtÞ

o& 2.7 11.6 2.6 0
Jth& 7:876103n 4:666103n 50:36106n 43:76106n
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EXERCISES

10.1 Consider an observable system with n ¼ 5 and m ¼ 4.

(a) Construct Tables 10.1 and 10.2 for the failure detection and
isolation of this system, and for q ¼ 1 and 2, respectively.

(b) Construct a similar table for q ¼ 3. Compare the results of q ¼ 2
and 3.

Answer: Although the number of robust failure detectors is the same
for q ¼ 2 and 3, the failure isolation capability is different for q ¼ 2
and 3 (the latter is better but is more difficult to design).
(c) Construct Table 10.4 for q ¼ 1; 2; and 3, respectively.
(b) If one plant system state is known to be failure free, then how

many robust failure detectors are needed to isolate q simulta-
neous failures (q ¼ 1; 2; 3, respectively)?

10.2 Under the condition that Fi is in diagonal form, how can (10.7) be the
sufficient condition of the physical requirement which is expressed
inside the parentheses attached to (10.7)?

10.3 Repeat the design of Examples 10.2 and 10.6 with a new set of robust
failure detector poles: f�1; � 2g and a new F0 ¼ �10. Other
parameters remain unchanged.
Partial answer:

T1 ¼
0 0 0:0058 1

0 0 0:0029 1

� �

T2 ¼ ½ 0 0:0015 0 �1 �

T3 ¼
0 0:2518 0:9678 0

0 0:4617 0:8871 0

� �
and

T4 ¼ ½�1 0 0 0 �
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Appendix A

Relevant Linear Algebra and Numerical Linear
Algebra

This appendix introduces the relevant mathematical background to this
book. In addition, an attempt is made to use the simplest possible language,
even though such a presentation may sacrifice certain degree of mathema-
tical rigor.

The appendix is divided into three sections.

Section 1 introduces some basic results of linear algebra, especially the
geometrical meanings and numerical importance of orthogonal
linear transformation.

Section 2 describes and analyzes some basic matrix operations which
transform a given matrix into echelon form. A special case of the
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echelon form is triangular form. This operation is the one used most
often in this book.

Section 3 introduces a basic result of numerical linear algebra—the
singular value decomposition (SVD). Several applications of SVD
are also introduced.

A.1 LINEAR SPACE AND LINEAR OPERATORS

A.1.1 Linear Dependence, Linear Independence, and Linear
Space

Definition A.1

A set of n vectors fx1; . . . ; xng is linearly dependent if there exists an n-
dimensional nonzero vector c 4¼ ½c1; . . . ; cn�0 6¼ 0 such that

½x1: . . . : xn�c ¼ x1c1 þ � � � þ xncn ¼ 0 ðA:1Þ

Otherwise, this set of vectors is linearly independent. At least one vector of a
set of linear dependent vectors is a linear combination of other vectors in
that set. For example, if a set of vectors satisfies (A.1), then

xi ¼ �
P

i 6¼j xjcj

� �
ci

; if ci 6¼ 0 ðA:2Þ

Example A.1

Let a set of two vectors be

½x1: x2� ¼
1 �2

�1 2

� �
Because there exist a vector c ¼ ½2 1�0 6¼ 0 such that ½x1: x2�c ¼ 0; x1 and x2
are linearly dependent of each other.

Example A.2

Let another set of two vectors be

½x3: x4� ¼
2 1
0 1

� �

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.



www.manaraa.com

Because only a zero vector c ¼ 0 can make ½x3: x4�c ¼ 0, therefore x3 and x4
are linearly independent of each other.

Similarly, any combination of two vectors, with one from the set
fx3; x4g and another from the set fx1; x2g of Example A.1, is linearly
independent. However, any set of three vectors out of xi ði ¼ 1; . . . ; 4Þ is
linearly dependent.

Examples A.1 and A.2 can be interpreted geometrically from Fig. A.1,
which can be interpreted to have the following three points.

1. Because x1 and x2 vectors are parallel in Fig. A.1, or because the
angle between them is 1808 (or 08), x1 and x2 are linearly
dependent, or x1 differs from x2 only by a scalar factor. Because
the angles between all other vector pairs in Fig. A.1 are not equal
to 08 or 1808, all other pairs of vectors are linearly independent.

2. From analytical geometry, the angle y between two vectors xi and
xj satisfies the relation

x0ixj ¼ x0jxi ¼ kxikkxjk cos y; ðA:3Þ

where the vector norm kxk is defined in Definition 2.3. For
example,

x01x2 ¼ ½ 1 �1 �½ �2 2 �0 ¼ �4

¼ k½ 1 �1 �kk½�2 2 �k cos 180� ¼ ð
ffiffiffi
2

p
Þð2

ffiffiffi
2

p
Þð�1Þ

x01x3 ¼ ½ 1 �1 �½ 1 0 �0 ¼ 1

¼ k½ 1 �1 �kk½ 1 0 �k cos 45� ¼ ð
ffiffiffi
2

p
Þð1Þð1=

ffiffiffi
2

p
Þ

and

x01x4 ¼ ½ 1 �1 �½ 1 1 �0 ¼ 0

¼ kx1kkx4k cos 90� ¼ kx1kkx4kð0Þ

We define two vectors as ‘‘orthogonal’’ if the angle between
them is +90�. For example, fx1; x4g and fx2; x4g are orthogonal
pairs, while other vector pairs of Fig. A.1 are not. If cos 08 and cos
1808 have the largest magnitude (1) among cosine functions,
cosð+90�Þ ¼ 0 has the smallest. Hence orthogonal vectors are
considered ‘‘most linearly independent.’’

We also define kxik cos y as the ‘‘projection’’ of xi on xj, if y
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is the angle between xi and xj . Obviously, a projection of xi is
always less than or equal to kxik and is equal to 0 if y ¼ +90�.

3. Any two-dimensional vector is a linear combination of any two
linearly independent vectors on the same plane. For example, x3 ¼
x1 þ x4 and x4 ¼ ð1=2Þx2 þ x3. These two relations are shown in
Fig. A.1 by the dotted lines. Therefore, the vectors in any set of
three two-dimensional vectors are linearly dependent of each
other. For example, if x ¼ ½y: z�c, then ½x: y: z�½1:�c0�0 ¼ 0.

If two vectors ðy; zÞ are orthogonal to each other, and if
½y: z�c equals a third vector x, then the two coefficients of c equal
the projections of x on y and z respectively, after dividing these
two projections by their respective kyk and kzk. For example, for
x3 of Fig. A.1, the linear combination coefficients (1 and 1) of the
orthogonal vectors x1 and x4 equal the projections ð

ffiffiffi
2

p
and

ffiffiffi
2

p
Þ of

x3 on x1 and x4, divided by the norms ð
ffiffiffi
2

p
;

ffiffiffi
2

p
Þ of x1 and x4.

Definition A.2

A linear space S can be formed by a set of vectors such that any vector
within this set (defined as [S) can be represented as a linear combination of
some other vectors X ¼ ½xi: . . . :xn� within this set (defined as the span of X).
The largest number of linearly independent vectors needed to represent the
vectors in this space is defined as the dimension dimðSÞ of that space.

For example, vectors x1 and x2 of Example A.1 can span only a
straight line space which is parallel to x1 and x2. Any of these parallel

Figure A.1 Four two-dimensional vectors.
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vectors is a linear combination of another parallel vector only. Hence the
dimension of this straight line space is 1.

In Examples A.1 and A.2, each of the vector pair fx1; x3g; fx1; x4g,
and fx3; x4g can span a plane space, because any vector on this plane can be
represented as a linear combination of one of these three vector pairs. In
fact, because any one vector in this plane is a linear combination of two
linearly independent vectors on this plane, the dimension of this plane space
is 2.

Example A.3

The above result can be extended to higher dimensional vectors. Let a set of
three-dimensional vectors be

½y1: y2: y3: y4: y5: y6: y7� ¼
2 1 1 0 0 �1 �2
0 1 1 1 0 0 1
0 0 1 1 2 1 0

24 35
which are plotted in Fig. A.2.

From Fig. A.2, vectors y1 and y2 span a horizontal two-dimensional
plane space. Any three-dimensional vector with form ½x x 0�0 (‘‘x’’ stands for
an arbitrary entry) or with 0 at the third (vertical) direction equals a linear
combination of y1 and y2, and therefore lies within this horizontal plane
space. For example, y7 ¼ ½�2 1 0 �0 ¼ ½y1: y2�½�3=2 1�0 belongs to this
space. However, all other vectors y3 to y6 which stretch on the vertical

Figure A.2 Seven three-dimensional vectors.
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direction are linearly independent of the vectors fy1; y2; y7g of this
horizontal plane space, and hence do not belong to this horizontal plane
space.

Although y3 to y6 are linearly independent of the vectors fy1; y2; y7g
on the horizontal plane space, only y5 ð¼ ½0 0 x�Þ is orthogonal to all
vectors of this horizontal space (also called orthogonal to that space).
Finally, any one of the vectors y3 to y6, together with two linearly
independent vectors of this horizontal plane space, form a three-dimensional
cubic space.

Similarly, vectors y1 and y6 span a two-dimensional plane space which
is parallel to this page flat. Any three-dimensional vector with form ½x 0 x�0
or with 0 at the second (depth) direction equals a linear combination of y1
and y6. For example, y5 ¼ ½0 0 2�0 ¼ ½y1 : y6�½1 2�0 belongs to this space.
However, all other vectors of Fig. A.2 have nonzero projection on the depth
direction. Therefore these vectors are linearly independent of the vectors
fy1; y5; y6g and do not belong to this space. Among these vectors, none is
orthogonal to this two-dimensional space because none has the form
½0 x 0�0, even though within each pair of fy4; y1g; fy2; y5g, and fy3; y6g, the
two vectors are orthogonal to each other.

In the literature, there is a more rigorous definition than Definition
A.2 for the linear space S [Gan, 1959]. For example, if we generalize the
vectors of a linear space S as ‘‘elements’’ of that space, then S must also
have ‘‘0’’ and ‘‘1’’ elements [Gan, 1959].

Example A.4

We define the space formed by all n-dimensional vectors b satisfying the
equation b ¼ Ax (matrix A is given and x is arbitrary) as RðAÞ, or as the
‘‘range space of A.’’ We also define the number of linearly independent
columns/rows of A as the ‘‘column rank/row rank’’ of A. It is clear that the
necessary and sufficient condition for dim½RðAÞ� ¼ n [or for RðAÞ to include
any possible nonzero b] is that the column rank of A equals n.

If the column/row rank of a matrix equals the number of columns/
rows of that matrix, then we call this matrix ‘‘full-column rank’’/‘‘full-row
rank.’’

We also define the space formed by all vectors x satisfying Ax ¼ 0 as
NðAÞ or the ‘‘null space of A.’’ It is clear that if matrix A is full-column rank,
then the only vector in NðAÞ is x ¼ 0.

However, the set of all vectors x satisfying Ax ¼ b (b=0 is given)
cannot form a linear space, because this set lacks a ‘‘0’’ element (or 0 vector)
such that A0 ¼ b=0.
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A.1.2 Basis, Linear Transformation, and Orthogonal Linear
Transformation

Definition A.3

If any vector x of a linear space S is a linear combination of a set of linearly
independent vectors of S, then this set of linear independent vectors is
defined as a ‘‘basis’’ of S. The linear combination coefficient is defined as the
‘‘representation’’ of x with respect to this set of basis vectors.

Because any set of n linearly independent n-dimensional vectors can
span an n-dimensional linear space S, by Definition A.3 any of these sets can
be considered as a basis of S.

Definition A.4

An n-dimensional linear space can have many different sets of basis vectors.
The operation which transforms the representation of a vector from one
basis to another basis is called a ‘‘linear transformation.’’

For example, the simplest and most commonly used basis is a set of
orthogonal unit coordinate vectors

I 4
¼

½e1 : . . . : en� 4¼

1 0 . . . 0

0 1 . .
. ..

.

..

. . .
. . .

.

0
0 . . . 0 1

2666664

3777775
Because any n-dimensional vector b ¼ ½b1; . . . ; bn�0 is a linear combination of
the vectors ½e1 : . . . : en� such that

b ¼ Ib ðA:4Þ

and because the representation of b on I is b itself, I is a basis and is called an
‘‘identity matrix.’’

For another example, if we let the vectors of A ¼ ½a1 : . . . : an� be the
basis for a vector b, then Ax ¼ b implies that x ¼ A�1b is the representation
of b on A.
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Now let another set of vectors V ¼ ½v1 : . . . : vn� be the basis for the
same b. Then

Vx ¼ b ¼ Ax ðA:5aÞ

implies

x ¼ V�1b ¼ V�1Ax ðA:5bÞ

is the representation of b on V.

Definition A.5

A set of orthogonal basis vectors fu1; . . . ; un; ðu0iuj ¼ xdijÞg is called an
‘‘orthogonal basis.’’ The linear transformation which transforms to an
orthogonal basis is called ‘‘orthogonal linear transformation.’’

Furthermore, if all vectors of this orthogonal basis are ‘‘normalized’’
ðkuik ¼ 1; ViÞ, then the basis is called ‘‘orthonormal’’ and the corresponding
orthogonal linear transformation becomes an ‘‘orthonormal linear trans-
formation.’’ A matrix U, which is formed by a set of orthonormal basis
vectors, satisfies U 0U ¼ I and is called a ‘‘unitary matrix.’’

Example A.5

Let a vector x ¼ ½1
ffiffiffi
3

p
�0. Table A.1 shows some two-dimensional linear

transformation examples in which the orthonormal linear transformation
can preserve the norms of any vector x and its representation x on the new
orthonormal basis. This property can be interpreted geometrically from the
fourth column of Table A.1, which shows that every element of x equals the
projection of x on the corresponding axis [see interpretation (3) of Fig. A.1].
This property can be proved mathematically that

kxk ¼ ðx0xÞ1=2 ¼ ðx0ðV�1Þ0ðV�1ÞxÞ1=2 ¼ ðx0xÞ1=2 ðA:6Þ

if V (or V�1) is a unitary matrix. This property implies that the orthonormal
matrix operation is numerically stable [Wilkinson, 1965].
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A.2 COMPUTATION OF MATRIX DECOMPOSITION

In solving a set of linear equations

Ax ¼ b ðA:7aÞ

or in computing the representation x of b on the column vectors of A, a
nonsingular matrix V�1 can be multiplied on the left side of A and b to make
matrix A ¼ V�1A in echelon form. Then based on the equation

Ax ¼ V�1b 4
¼

b ðA:7bÞ

x can be computed. In other words, the representation b of b can be
computed on the new basis vectors of V such that A of (A.7b) is in a
decomposed form, and then x can be computed based on (A.7b).

We will study three different matrices of V�1. All three matrices can be
computed from the following unified algorithm.

Algorithm A.1 QR Decomposition [Dongarra et al., 1979]

Let A ¼ ½ a1 : . . . : an � be an n6n dimensional square matrix.

Step 1: Compute n6n dimensional matrix V�1
1 such that

V�1
1 a1 ¼ ½x; 0 . . . 0�0 ðA:8aÞ

Step 2: Let

V�1
1 A ¼ A1 ¼

x : a011
:: :: . . . : :: . . . : :: . . . :

0 : : :

: : a12 : . . . : : a1n

0 : : :

26666664

37777775
Step 3: Compute ðn� 1Þ6ðn� 1Þ dimensional matrix V

�1

2 such that

V
�1

2 a12 ¼ ½x; 0 . . . 0�0 ðA:8bÞ
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Step 4: Let

1 : . . . 0
0 :
..
.

V
�1

2

0 :

2664
3775ðV�1

1 AÞ 4
¼

V�1
2 A1

¼

x : a011
:: :: :: :: . . . :: . . . :: . . .
0 : x : a022

: :: :: . . . :: . . . :: . . .
: : 0 : : :

: : : a23 : . . . : a2n
0 : 0 : : :

2666666664

3777777775
Continuing in this fashion, at most n� 1 times we will have

ðV�1
n�1 . . .V

�1
2 V�1

1 A 4
¼

V�1AÞ

¼

x -a011-
0 x -a022-

..

. . .
.

. .
.

0 . . . x

2666664

3777775 ðA:9Þ

During this basic procedure, if ai;iþ1 ¼ 0 is encountered
ði ¼ 1; 2; . . .Þ, or if

V�1
i . . .V�1

2 V�1
1 A ¼

x X :
. .
.

: X
x :

:: . . . . . . . . . . . . . . . . . . . . .
: 0 : : :

0 : : : ai;iþ2 : :: : ain
: 0 : : :

2666666664

3777777775
then the matrix V�1

iþ1 will be computed based on the next
nonzero vector positioned on the right side of ai;iþ1 (for
example, if ai;iþ2=0) such that V

�1

iþ1ai;iþ2 ¼ ½x; 0 . . . 0�0. The
algorithm will then proceed normally.
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The above situation can happen more than once. However, as long as
this situation happens at least once, the corresponding result of (A.9) will
become a so-called upper-echelon form, such as

V�1A ¼

x R1 :

. .
.

: X
0 x :
. . . . . . :: :: :: :: :: . . . . . . :: . . . . . . :: :: . . . . . . :: . . . ::
0 . . . 0 : 0 : x R2 :

: : : . .
.

: X
: 0 : 0 x :

. . . . . . :: :: :: :: :: . . . . . . :: . . . . . . :: :: . . . . . . :: . . . ::
0 . . . 0 : 0 0 . . . 0 : 0 . . . 0 : x R3 :

: : : . .
.

: X
: : 0 . . . 0 : 0 x :
: 0 : . . . . . . : :: . . . . . . :: . . . ::
: : : 0 . . . . . . :: . . . 0
: : : : :
: : : 0 . . . . . . :: . . . 0|{z}

p

: : |{z}
q

:

266666666666666666666666666666664

377777777777777777777777777777775

¼4R

ðA:10Þ

where ‘‘x’’’s are nonzero elements.
In the upper-echelon form, the nonzero elements appear only at the

upper right-hand side of the upper triangular blocks [such as R1, R2, and R3

in (A.10)]. These upper triangular blocks appear one after another after
shifting one or more columns to the right. For example, in (A.10), R2

follows R1 after shifting one column to the right, and R3 follows R2 after
shifting q columns to the right.

If two upper triangular blocks appear one next to the other without
column shifting, then the two blocks can be combined as one upper
triangular block. If there is no column shifting at all, then the entire matrix
is an upper triangular matrix as in (A.9). Hence the upper triangular form is
a special case of the upper-echelon form.

The main feature of an upper-echelon-form matrix is that it reveals
clearly the linear dependency among its columns. More explicitly, all
columns corresponding to the upper triangular blocks are linearly
independent of each other, while all other columns are linear combinations
of their respective linearly independent columns at their left.

For example in matrix R of (A.10), the ðpþ 1Þ-th column is linearly
dependent on the columns corresponding to R1, while the q columns
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between R2 and R3 are linearly dependent on the columns corresponding to
R1 and R2.

The above property of an upper-echelon-form matrix enables the
solving of Eq. (A.7a). We first let matrix

~AA ¼ ½A : b� ðA:11Þ

Then apply Algorithm A.1 to matrix ~AA. If after V�1
r is applied,

V�1
r . . .V�1

1
~AA ¼ A11 :A12 : b1

0 :A22 : 0

� �
gr
gn� r

ðA:12aÞ

then b1 is already a linear combination of the columns of A11, and the
coefficients of this linear combination form the solution x of (A.7a). In other
words, if A11x1 ¼ b1, then the solution of (A.7a) is x ¼ ½x01 : 00�

0 with
n� r 0’s in vector 0.

In general, we cannot expect the form of (A.12a) for all A and b.
Instead, we should expect

V�1
n�1 . . .V

�1
1 b ¼ ½x . . . x�0 ðA:12bÞ

For (A.12b) to be represented as a linear combination of the columns of
A 4¼ V�1

n�1 . . .V
�1
1 A; A must be in upper triangular form or must have all n

columns linearly independent of each other. This is the proof that to have
Ax ¼ b solvable for all b, matrix A must have full-column rank (see
Example A.4).

In the basic procedure of Algorithm A.1, only matrix ViðV�1
i ai ¼

½x; 0 . . . 0�0Þ can be nonunique. We will introduce three kinds of such
matrices in the following. The last two matrices among the three are unitary.
We call Algorithm A.1 ‘‘QR decomposition’’ when matrix V is unitary.

For simplicity of presentation, let us express

ai 4¼ a ¼ ½a1; . . . ; an�0
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A. Gaussian Elimination with Partial Pivoting

E ¼ E2E1 ¼

1 0 . . . 0

�a2=aj 1 . .
.

:

..

. . .
.

:

�aj�1=aj
. .
.

:

�a1=aj
. .
.

:

�ajþ1=aj
. .
.

:

..

.
0

�an=aj 1

266666666666666666664

377777777777777777775
0 0 0 0 1 0 . . . 0

0 1 0 0 0 0 :

..

. . .
.

0 0 0 1 0 0

1 0 0 0 0 0 . . . 0

0 0 0 0 0 1 ..
.

..

.
0 . .

.
0

0 . . . 0 1

26666666666666664

37777777777777775
/j-th row

:
the j-th column

ðA:13Þ

where jajj ¼ maxi fjaijg is called the ‘‘pivotal element.’’
Because E1a 4¼ a ¼ ½aj; a2; . . . ; aj�1; a1; ajþ1; . . . ; an�0, it can be easily

verified that E2E1a ¼ E2a ¼ ½aj; 0 . . . 0�0.
Because of (A.13), all unknown parameters of E2

j � ai=aj j41; V i and j ðA:14Þ

Therefore the Gaussian elimination with partial pivoting is fairly
numerically stable [Wilkinson, 1965].

The order of the computation (multiplications only) of Ex ðx 6¼ aÞ is
n, excluding the computation of matrix E itself. Hence the order of
computation for Algorithm A.1 using Gaussian elimination method is
Si¼2 to n i2 & n3=3.
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B. Householder Method [Householder, 1958]

H ¼ I � 2aa0 ðA:15aÞ

where

a ¼ b

kbk ðA:15bÞ

and

b ¼ aþ kake1; if a150
a� kake1; if a1 < 0

�
ðA:15cÞ

Because

kbk ¼ ðb0bÞ1=2 ¼ ð2kak2+2a1kakÞ1=2 ðA:16Þ
Ha ¼ ðI � 2bb0=kbk2Þa

ðA:15Þ : ¼ a� 2bðkak2+a1kakÞ=kbk2

ðA:16Þ : ¼ a� 2b=2

ðA:15Þ : ¼ a� ða+kak½1; 0 . . . 0�0Þ
¼ +½kak; 0 . . . 0�0 ðA:17Þ

In addition, because

H 0H ¼ ðI � 2aa0ÞðI � 2aa0Þ
¼ I � 4aa0 þ 4aa0aa0

ðA:15bÞ : ¼ I � 4aa0 þ 4aðb0b=kbk2Þa0

¼ I � 4aa0 þ 4aa0

¼ I

matrix H is unitary. Hence this computation is numerically stable (see
Example A.5).

The actual computation of Hx ðx 6¼ aÞ does not need to compute the
matrix H itself but can follow the following steps:

Step 1: Compute 2kbk�2 ¼ ða0a+a1ða0aÞ1=2Þ�1 (computation order: n)
Step 2: Compute scalar c ¼ 2kbk�2ðb0xÞ (computation order: n)
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Step 3: Compute Hx ¼ x� cb (computation order: n)

Because the result of Step 1 remains the same for different vectors x, the
computation of Step 1 will not be counted. Hence the computation of
Algorithm A.1 using Householder method is Si¼2 to n 2i2&2n3=3.

Because computational reliability is more important than computa-
tional efficiency, the Householder method is very commonly used in practice
and is most commonly used in this book, even though it requires twice as
much computation as the Gaussian elimination method.

C. Givens’ Rotational Method [Givens, 1958]

G ¼ G1G2; . . . ;Gn�2Gn�1 ðA:18aÞ

where

Gi ¼

1 : :
. .
.

: :
1: :

. . . . . . . . . : . . . . . . . . . . . . . . .
: Ri :

. . . . . . . . . : . . . . . . . . . . . . . . .
: : 1

: : . .
.

: : 1

266666666666664

377777777777775

gi � 1

g2

gn� i � 1

ðA:18bÞ

and

Ri ¼
cos yi sin yi

� sin yi cos yi

� �
ðA:18cÞ

Equation (A.18) shows that the component matrices Gi ðor RiÞ of matrix G
are decided by their respective parameter yi; ði ¼ n� 1; n� 2; . . . ; 1Þ. The
parameter yi is determined by the two-dimensional vector operated by Ri.
Let this vector be bi ¼ ½x y�0. Then

yi ¼ tan�1 ðy=xÞ ð¼ 90� if x ¼ 0Þ

or

cos yi ¼ x=kbik and sin yi ¼ y=kbik
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It is easy to verify that

Ribi ¼ ½kbik; 0 . . . 0�0

The geometrical meaning of Ribi can be interpreted as the rotation of
the original cartesian coordinates counterclockwise yi degrees so that the x-
axis now coincides with bi. This operation is depicted in the Fig. A.3.

The reader can refer to Example A.5 for three numerical examples of
Givens’ method.

It is easy to verify that according to (A.18a,b,c),

Ga ¼ ½kak; 0 . . . 0� ðA:18dÞ

Because R0
iRi ¼ I Vi, the matrix G of (A.18a,b,c) is a unitary matrix.

Therefore like the Householder method, the Givens’ rotational method is
numerically stable.

It is easy to verify that the order of computation for Gx ðx 6¼ aÞ is 4n,
excluding the computation of G itself. Hence the order of computation of
Algorithm A.1 is Si¼2 to n 4i2 & 4n3=3.

Although Givens’ method is only half as efficient as Householder’s
method, it has very simple and explicit geometrical meanings. Therefore it is
still commonly used in practice and is used in Algorithm 8.3 of this book.

Finally, after Algorithm A.1 is applied and the echelon-form matrix
V�1A ¼ A is obtained, we still need to compute x from A and V�1b ¼ b.
Eliminating the linearly dependent columns of A [see description of the
echelon form of (A.10)], we have

Ax ¼4
a11 a12 . . . a1r
0 a22 . . . a2r
..
. . .

. ..
.

0 . . . 0 arr

26664
37775

x1
x2
..
.

xr

26664
37775 ¼ b ¼4

b1
b2
..
.

br

26664
37775 ðA:19Þ

Figure A.3 Geometrical meaning of Givens’ rotational method.
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where the diagonal elements of the matrix are nonzero. It is obvious that the
solution of (A.19) is

xr ¼
br

arr
xi ¼

bi �
Pr

j¼iþ1 aijxj

� �
aii

; i ¼ r� 1; r� 2; . . . ; 1 ðA:20Þ

The computation of (A.20) is called ‘‘back substitution,’’ whose order of
computation at r ¼ n is n2=2. This computation is numerically stable with
respect to the problem (A.19) itself [Wilkinson, 1965].

However, because this operation requires consecutive divisions by
aii ði ¼ r; r� 1; . . . ; 1Þ, the problem (A.19) can be ill conditioned when these
elements have small magnitudes. This understanding conforms with the
theoretical result about the condition number kAkkA�1k of matrix A (2.13).
In the next section (A.28)–(A.29), we will show that kA�1k ¼ s�1

r 5jlrj�1,
where sr and

jlrj ¼ min
i
fjaiijg

are the smallest singular value and the smallest eigenvalue of A, respectively.
Thus small elements aii imply large and bad condition of matrix A as well as
problem (A.19).

Comparing the resulting vector ½aii; 0 . . . 0�0 of the three matrix
decomposition methods, both orthogonal methods (Householder and
Givens) have aii ¼ kaik2 [see (A.17) and (A.18d)], while the Gaussian
elimination method has aii ¼ kaik? [see (A.13) and Definition 2.1]. Because
kaik25kaik?, the orthogonal methods not only are computationally more
reliable than the Gaussian elimination method, but also make their
subsequent computation better conditioned.

A.3 SINGULAR VALUE DECOMPOSITION (SVD)

Matrix singular value decomposition was proposed as early as in 1870 by
Betram and Jordan. It became one of the most important mathematical
tools in numerical linear algebra and linear control systems theory only in
the 1970s [Klema and Laub, 1980], about a hundred years later. This is
because SVD is a well-conditioned problem and because of the development
of a systematic and numerically stable computational algorithm of SVD
[Golub and Reinsch, 1970].
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A.3.1 Definition and Existence

Theorem A.1

For any m6n dimensional matrix A, there exists an m6m and n6n
dimensional unitary matrix U and V such that

A ¼ U
X

V* ¼ U1SrV
*
1 ðA:21Þ

where

X
¼

Sr 0

0 0

� �
; Sr ¼ diagfs1;s2; . . . ; srg

U ¼ ½U1 : U2 �
r m�r

and V ¼ ½V1 : V2 �
r n�r

and

s15s25 � � �5sr > 0

Here si ði ¼ 1; . . . ; rÞ is the positive square root of the i-th largest eigenvalue
of matrix A*A, and is defined as the i-th nonzero singular value of matrix A.
Matrices U and V are the orthonormal right eigenvector matrices of AA*

and A*A, respectively. In addition, there are minfm; ng � r 4¼ n� r (if
n4m) zero singular values ðsrþ1 ¼ � � � ¼ sn ¼ 0Þ of matrix A. Equation
(A.21) is defined as the singular value decomposition of matrix A.

Proof

See Stewart [1976].

A.3.2 Properties

Theorem A.2 Minimax Theorem

Let the singular values of an m6n dimensional matrix A be
s15s25 � � �5sn > 0. Then

sk ¼ min
dimðSÞ¼n�kþ1

max
x [S
x=0

kAxk
kxk k ¼ 1; 2; . . . ; n ðA:22Þ
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where the linear space S is spanned by the n� kþ 1 basis vectors
fvk; vkþ1; . . . ; vng which are the last n� kþ 1 vectors of matrix V of
(A.21).

Proof

From Definition A.2, let the unitary matrix

V ¼4 ½V1 : V2� ¼
4 ½ v1 : . . . : vk�1jvk : . . . : vn �

Then the vectors of V1 will span the ‘‘orthogonal complement space’’ S of S
such that S

0
S ¼ 0 and S [ S ¼ n-dimensional space.

Because x [S implies

x ¼ ½ v1 : . . . : vk�1jvk : . . . : vn �

0

..

.

0

ak

..

.

an

266666666664

377777777775

gk� 1

4
¼

Va

gn� kþ 1

ðA:23Þ

Hence

kAxk=kxk ¼ ðx*A*Ax=x*xÞ1=2

¼ ða*V*A*AVa=a*V*VaÞ1=2

¼ ða*S2a=a*aÞ1=2

¼ ½ða2ks2k þ a2kþ1s
2
kþ1 þ � � � þ a2ns

2
nÞ=ða2k þ a2kþ1 þ � � � þ a2nÞ�

1=2

4sk
ðA:24Þ
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Thus the maximum part of the theorem is proved. On the other hand,

x ¼ ½ v1 : . . . : vk : vkþ1 : . . . : vn �

a1
..
.

ak
0

..

.

0

266666664

377777775 ðA:25Þ

similarly implies that kAxk=kxk5sk.
The combined (A.24) and (A.25) prove Theorem A.2.

Corollary A.1

kAk ¼4 max
x 6¼0

kAxk
kxk ¼ s1 ðA:26Þ

Corollary A.2

min
x=0

kAxk
kxk ¼ sn ðA:27Þ

Corollary A.3

s15jl1j5 � � �5jlnj5sn ðA:28Þ

where li ði ¼ 1; . . . ; nÞ are the eigenvalues of matrix A (if m ¼ n)

Corollary A.4

If A�1 exists, then

kA�1k ¼4 max
x=0

kA�1xk
kxk ¼ max

x 6¼0

kV1S�1
r U*

1 xk
kxk ¼ s�1

n ðA:29Þ
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Corollary A.5

If A�1 exists, then

min
x=0

kA�1xk
kxk ¼ s�1

1 ðA:30Þ

Corollary A.6

Let the singular values of two n6n matrices A and B be s15s25 � � �5sn
and s15s25 � � �5sn, respectively, then

jsk � skj4kA� Bk ¼4 k4Ak; ðk ¼ 1; . . . ; nÞ ðA:31Þ

Proof

From (A.22),

sk ¼ min
dimðSÞ¼n�kþ1

x [S:x=0

max
kAxk
kxk ¼ max

x [S;x=0

kðBþ4AÞxk
kxk

4
kBxkx [S;x=0

kxk þ
k4Axkx [S;x=0

kxk
4sk þ k4Ak ðA:32Þ

Similarly,

sk4sk þ k4Ak ðA:33Þ

Hence the theorem.

Corollary A.6 implies that SVD problem is well conditioned, or is
insensitive to the original data variation 4A.

A.3.3 Applications

For simplicity of presentation, we let all matrices of this section be real, and
we present all theorems without proof.
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A. Solving of a Set of Linear Equations

Ax ¼ b; ðb=0Þ ðA:34Þ

From (A.21):

x ¼ V1S�1
r U 0

1b ðA:35Þ

Theorem A.3

If b is a linear combination of the columns of U1, then (A.35) is an exact
solution of (A.34).

This theorem proves that the columns of U1 span the range space of
A RðAÞ (see Example A.4).

Theorem A.4

If b is not a linear combination of the columns of U1, then (A.35) is the least-
square solution of (A.34). In other words, for all 4x=0,

kAx� bk4kAðxþ4xÞ � bk ðA:36Þ

if x is computed from (A.35).

Theorem A.5

If the rank of matrix A is n, then U1 has n linearly independent columns.
Thus the necessary and sufficient condition for (A.34) to have exact solution
(A.35) for all b is that matrix A be full rank.

Theorem A.6

The nonzero solution x of linear equations

Ax ¼ 0 ðA:37Þ

is a linear combination of the columns of V2. In other words, the columns of
V2 span the null space of A;NðAÞ.

The above result can be generalized to its dual case.
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Example A.6

[See Step 2(a), Algorithm 6.1.]
Let the m6p ðm4pÞ dimensional matrix DB be full-row rank. Then in

its SVD of (A.21), U1 ¼ U and U2 ¼ 0. Thus based on the duality (or
transpose) of Theorem A.6, there is no nonzero solution c such that
cDB ¼ 0.

Based on the duality (or transpose) of Corollary A.2,

min kcDBk ¼ sm; when c ¼ u0m ¼ ðthe m-th column of UÞ0

Example A.7

(See Conclusion 6.4 and its proof.)
Let the n6p ðn > pÞ dimensional matrix B be full-column rank. Then

in its SVD of (A.21), U1 and U2 have dimensions n6p and n6ðn� pÞ,
respectively. Based on the transpose of Theorem A.6, all rows of ðn�mÞ6n
dimensional matrix T such that TB ¼ 0 are linear combinations of the rows
of U 0

2.
Now because RðU1Þ [ RðU2Þ ¼ n-dimensional space Rn and

U 0
1U2 ¼ 0, the rows of any m6n matrix C such that ½T 0 : C0�0 is full rank

must be linear combinations of the rows of U 0
1. Consequently, CB must be

full-column rank.

Example A.8

(See Steps 4 of Algorithm 8.2 and Step 3 of Algorithm 8.3.)
Let the columns of an n6p ðn > pÞ dimensional matrix D be

orthonormal. Then in its SVD of (A.21), U ¼ D and Sr ¼ V ¼ Ip. Thus
the least-square solution (A.35) of Dc ¼ b is

c ¼ D0b

Theorem A.7

Let us define Aþ as the pseudo-inverse of matrix A such that
AþAAþ ¼ Aþ; AAþA ¼ A; ðAAþÞ0 ¼ AAþ, and ðAþAÞ0 ¼ AþA. Then

Aþ ¼ V1S�1
r U 0

1
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Thus from Theorems A.3 and A.4, x ¼ Aþb is the least-square solution of
Ax ¼ b.

B. Rank Determination

From Theorems A.3 to A.6, the rank r of an n6n dimensional matrix A
determines whether the Eqs. (A.34) and (A.37) are solvable. If r ¼ n, then
(A.34) is solvable for all b=0 while (A.37) is unsolvable. If r < n, then
(A.34) may not be solvable while (A.37) has n� r linearly independent
solutions x.

There are several numerical methods for rank determination. For
example, Algorithm A.1 can be used to determine the number ð¼ rÞ of
linearly independent columns/rows of a matrix. The rank of a square matrix
also equals the number of nonzero eigenvalues of that matrix. However,
both numbers are very sensitive to the variation and uncertainty of matrix
A;DA. Therefore these two methods are not very reliable in rank
determination.

On the other hand, the rank of matrix A also equals the number of
nonzero singular values of A, and the singular values are insensitive to DA.
Therefore, this is, so far, the most reliable method of rank determination.

Theorem A.8

If the singular values computed from a given matrix Aþ DA are
s15s25 � � �5sn > 0 ðr ¼ nÞ, then the necessary condition for the rank of
the original matrix A to be less than n (or sn of A ¼ 0) is kDAk5sn, and the
necessary condition for the rank of A to be less than r (or sr of A ¼ 0) is
kDAk5sr ðr ¼ 1; . . . ; nÞ.

Proof

Let sr be zero in Corollary A.6 for r ¼ 1; . . . ; n, respectively.

Theorem A.8 implies that the determination of rank ¼ r (or r nonzero
singular values) has an accuracy margin which is equivalent of kDAk < sr.

In solving the set of linear equations (A.34), the higher the determined
r, the more accurate the least-square solution (A.35), and the greater the
norm of the corresponding solution because of the greater corresponding
s�1
r (see the end of Sec. A.2). This tradeoff of accuracy and solution
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magnitude is studied in depth in Lawson and Hanson [1974] and Golub et
al. [1976a].

From this perspective, not only the absolute magnitude of the singular
values, but also the relative magnitude among the singular values should be
considered in rank determination. For example, the r is determined so that
there is a greater gap between singular values sr and srþ1 than other singular
value gaps.

This tradeoff between accuracy and solution magnitude (or the
condition of subsequent computation) also surfaced in control systems
problems. For example, such a tradeoff is involved between the condition of
Eq. (4.1) and the amount of system order (or system information), as
discussed at the end of Sec. 5.2. Such a tradeoff also appears at the Hankow
matrix-based model reduction problem [Kung and Lin, 1981] and minimal
order realization problem [Tsui, 1983b].

Finally, although singular values are most reliable in revealing the
total number of linearly independent columns/rows of a matrix, they cannot
reveal which columns/rows of that matrix are linearly independent of each
other. On the other hand, each system matrix column or row corresponds to
a certain state, a certain input, or a certain output. Hence linear dependency
of each system matrix column/row is essential in many control problems
such as controllability/observability index computation or analytical
eigenvector assignment. Because the orthogonal QR matrix decomposition
operation (Algorithm A.1) can reveal such linear dependency, and because
this method is still quite reliable in computation [DeJong, 1975; Golub et al.,
1976a; Tsui, 1983b], it is most widely used in this book.
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Appendix B

Design Projects and Problems

There are eight design projects listed with partial answers, in this appendix.
Its purpose is twofold. First, these design projects show the usefulness of the
theoretical design methods of this book. Second, these design projects are
the synthesized and practical exercises of the theoretical design methods of
this book.

Because of the limitations on the scope of this book and of control
theory itself, only the mathematical models and mathematical design
requirements, and not the physical meanings of each project, are described
in this appendix. Readers are referred to the original papers for the detailed
physical meanings of each project, because such understanding of the actual
physical project is essential to any good design.
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System 1 Airplane system [Choi and Sirisena, 1974]

A ¼

�0:037 0:0123 0:00055 �1

0 0 1 0

�6:37 0 �0:23 0:0618

1:25 0 0:016 �0:0457

26664
37775

B ¼

0:00084 0:000236

0 0

0:08 0:804

�0:0862 �0:0665

26664
37775

and

C ¼
0 1 0 0

0 0 1 0

0 0 0 1

264
375

(a) Using Algorithms 5.3 to 6.1, design the dynamic part of the
dynamic output feedback compensator of this system, with
F ¼ �2.

(b) Using Algorithm 9.1, design the LQ optimal state feedback
control K for Q ¼ I ;R ¼ I . Compute the eigenvalues of the
corresponding feedback system dynamic matrix A� BK .

(c) Using the result K of part (b), design the output part of the
dynamic output K4¼ ½KZ : Ky� of the feedback compensator of
part (a) such that K ¼ K ½T 0 : C0�0 4¼ KC is best satisfied.

(d) Using Algorithm 8.1 (dual version), design Ky such that the
matrix A� BKyC has the same eigenvalues of part (b).

(e) Using Algorithm 9.2, design the LQ static output feedback
control KyCxðtÞ for Q ¼ I ;R ¼ I . The answer is:

Ky ¼
�0:397 �1:591 �7:847
1:255 3:476 4:98

� �

(f) Repeat part (e) for the generalized state feedback control KCxðtÞ.
(g) Compare the control systems of part (c) to part (f) in terms of

poles, eigenvector matrix condition number, feedback gain, and
zero-input response.
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(h) Design a complete failure detection/isolation/accommodation
system, with poles equal �1 and �2, and with any result selected
from part (c) to part (f) as a normal (failure-free) compensator.

System 2 Four-Water-Tank System [Ge and Fang, 1988]

Figure B.1 shows a four-tank system. On the condition that
Ai ¼ 500 cm2; si ¼ 2:54469 cm2 ði ¼ 1; . . . ; 4Þ, and uðtÞ ¼ 1 cm3=sec, the
state space model with the water levels hi (cm) ði ¼ 1; . . . ; 4Þ as the four-
system states is

A ¼ 21:886�1

�1 1 0 0

1 �2 1 0

0 1 �2 1

0 0 1 �2

26664
37775 B ¼

0:002

0

0

0

26664
37775

and

C ¼
1 0 0 0

0 0 1 0

0 0 0 1

264
375

(a) Using Algorithms 5.3 to 6.1 (especially Step 2(b) of Algorithm
6.1), design the dynamic part of a dynamic output feedback
compensator of this system, with F ¼ �7.

Figure B.1 A four-tank system.
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(b) Using Algorithm 10.1, design the failure detection and isolation
system with q ¼ 2 and with robust failure detector pole (or
double pole) equal �7. The partial answer is:

T1 ¼ ½ 0 0 0 �130:613 �

T3 ¼
0 16:702 �110:655 0

0 �27:144 135:721 0

� �

T5 ¼ ½ 84:582 0 �84:582 0 �

T6 ¼
116:517 �18:713 0 0

�114:759 22:952 0 0

� �
(c) Using the duality of Algorithm 5.3, design a unique state

feedback gain K to place the eigenvalues �2:778+ j14:19 and
�5:222+ j4:533 in matrix A� BK .

(d) Compare the parameter T0 of part (a) and Ti ði ¼ 1; 3; 5; 6Þ of
part (b) in generating the normal-state feedback K of part (c): Let
K ¼ KiCi, where Ci 4¼ ½T 0

i : C
0�0 ði ¼ 0; 1; 3; 5; 6Þ, and compare

the accuracy of KiCi and the magnitude of gain Ki.
(e) Repeat Examples 10.5 and 10.6 for the design of failure

accommodation control and of threshold treatment of model
uncertainty and measurement noise.

System 3 A Corvette 5.7 L, Multi-port, Fuel-Injected Engine
[Min, 1990]

At the operating point that manifold pressure¼ 14.4 In-Hg, throttle position
at 17.9% of maximum, engine speed¼ 1730RPM, and load torque¼ 56.3 ft-
lb., the linearized state space model is

A ¼

0:779 0:0632 �0:149 �0:635 �0:211

1 0 0 0 0

0:271 �0:253 0:999 0 0:845

0 0 0 0 0

0 0 0 0 0

26666664

37777775
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B ¼

1:579 0:22598
0 0
0 �0:9054
1 0
0 1

266664
377775 and C ¼

1 0 0 0 0
0 0 1 0 0
0 0 0 1 0

24 35

The five system states are: change in manifold pressure, change in manifold
pressure (last rotation), change in engine RPM, change in throttle position,
and change in external load, respectively. The two inputs are the next
rotation throttle angle change and the change of external load during the
next rotation, respectively.

(a) Using Algorithms 5.3 to 6.1, design the dynamic part of an output
feedback compensator for this system, with poles �1+ j.

(b) Determine the rank of matrix ½T 0 : C0�0. It should be 5 ¼ n.
(c) Design the failure detection, isolation, and accommodation

system, with q ¼ 2, and poles ¼ �2;�4, and �6.

System 4 Booster Rockets Ascending Through Earth’s
Atmosphere [Enns, 1990]

A ¼

�0:0878 1 0 0

1:09 0 0 0

0 0 0 1

0 0 �37:6 �0:123

26664
37775 B ¼

0 0 4:2610�10

0 0 1:27610�8

0 0 0

1 0 �1:2610�6

26664
37775

C ¼
0 1 0 �0:00606

0 0 �37:6 �0:123

0 0 0 �0:00606

264
375 D ¼

0 1 0

0 0 �1:2610�6

0 0 0

264
375

The four system states are angle of attack (rad.), pitch rate q (rad/sec),
lowest frequency elastic model deflection Z, and _ZZ, respectively. The three
inputs are the error of elastic model poles vPOLE, error of elastic model zeros
vZERO, and the thrust vectoring control uTVC(lb.), respectively. The three
outputs are the gyro output measurement yGYRO(rad/sec), Z� vPOLE, and
yGYRO � q� vZERO, respectively.

From a control theory point of view, a difficulty involved with this
problem is that the third column of B is too small, while its corresponding
input is the only real control input uTVC (the other two inputs are artificially
added to account for the errors associated with the elasticity model). In

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.



www.manaraa.com

addition, adjustment has to be made to consider the nonzero D matrix,
which is assumed to be zero in this book. Nonetheless, without matrix D
and by eliminating the second column of matrix B, the example becomes
similar to that of System 1.

System 5 Bank-to-Turn Missile [Wise, 1990]

At the flight conditions of 168 of angle of attack, Mach 0.8 (velocity of
886.78 ft/sec), and attitude of 4000 ft, the linearized missile rigid body
airframe state space model is

A ¼

�1:3046 0 �0:2142 0

47:7109 0 �104:8346 0

0 0 0 1

0 0 �12;769 �135:6

26664
37775 B ¼

0

0

0

12;769

26664
37775

and

C ¼
�1156:893 0 189:948 0

0 1 0 0

� �
The four system states are angle of attack, pitch rate, fin deflection, and fin
rate, respectively. The control input is fin deflection command (rad.), and
the two outputs are normal acceleration (ft/s2) and pitch rate (rad/s),
respectively.

(a) Using Algorithms 5.3 to 6.1, design the dynamic part of the
dynamic output feedback compensator of this system. Because
CB ¼ 0, we let the compensator order r ¼ 1 and dynamic matrix
F ¼ �10.

(b) Using the duality of Algorithm 5.3, design state feedback gain
K which can place each of the following four sets of
eigenvalues in matrix A� BK [Wilson et al., 1992]:
f�5:12; �14:54; �24:03+ j18:48g; f�10+ j10; �24+ j18g;
f�9:676+ j8:175; �23:91+ j17:65g, and f�4:7+ j2:416;
23:96+ j17:65g.

(c) Design the respective output part K of the dynamic output
feedback compensator of part (a), for the four sets of eigenvalues
of part (b).

(d) Compare the controls of parts (b) and (c), for each of the four sets
of part (b). The comparison can be made in the practical aspects
such as the control gain (K vs. K) and the zero-input response.
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(e) Design a complete failure detection, isolation, and accommoda-
tion system, with q ¼ 1 and poles ¼ �14; �10+ j10. The normal
feedback compensator can be chosen from any of the four
compensators of parts (a) and (c).

System 6 Extended Medium-Range Air-to-Air Missile
[Wilson et al., 1992]

At the flight condition of 108 of angle of attack, Mach 2.5 (velocity of
2420 ft/s), and dynamic pressure of 1720 lb/ft2, the normal roll-yaw missile
airframe model is

A ¼

�0:501 �0:985 0:174 0
16:83 �0:575 0:0123 0
�3227 0:321 �2:1 0

0 0 1 0

2664
3775

and

B ¼

0:109 0:007
�132:8 27:19
�1620 �1240

0 0

2664
3775

The four system states are sideslip, yaw rate, roll rate, and roll angle,
respectively. The two control inputs are rudder position and aileron
position, respectively.

(a) For each of the four sets of feedback system eigenvalues of
System 5, use Algorithms 8.2 and 8.3 and the analytic decoupling
rules to design the eigenvectors and the corresponding state
feedback gains.

(b) Compare each of the four sets of results of part (a) with the
following corresponding result of Wilson et al. [1992]:

K ¼
1:83 �0:154 0:00492 �0:0778

�2:35 0:287 �0:03555 0:0203

� �
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K ¼
5:6 �0:275 �0:00481 �0:989

�4:71 0:359 �0:00815 1:1312

�
K ¼

3:19 �0:232 0:10718 0:1777

�1:63 0:299 �0:15998 �0:4656

� �
K ¼

1:277 �0:172 0:10453 0:1223

0:925 0:2147 �0:15696 �0:2743

� �

The comparison can be made in practical aspects such as feedback
gain, robust stability (2.23� 2.25), and zero-input response.

System 7 Chemical Reactor [Munro, 1979]

A ¼

1:38 �0:2077 6:715 �5:676
�0:5814 �4:29 0 0:675
1:067 4:273 �6:654 5:893
0:048 4:273 1:343 �2:104

2664
3775

and

B ¼

0 0
5:679 0
1:136 �3:146
1:136 0

2664
3775

(a) Repeat part (a) of System 6, but for a new eigenvalue set:
f�0:2;�0:5;�5:0566;�8:6659g.

(b) Repeat part (b) of System 6, but compare the following two
possible results [Kautsky et al., 1985]:

K ¼
0:23416 �0:11423 0:31574 �0:26872

1:1673 �0:28830 0:68632 �0:24241

� �
K ¼

0:10277 �0:63333 �0:11872 0:14632

0:83615 0:52704 �0:25775 0:54269

� �
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System 8 Distillation Column [Kle, 1977]

A ¼

�0:1094 0:0628 0 0 0
1:306 �2:132 0:9807 0 0
0 1:595 �3:149 1:547 0
0 0:0355 2:632 �4:257 1:855
0 0:00227 0 0:1636 �0:1625

266664
377775

and

B ¼

0 0
0:0638 0
0:0838 �0:1396
0:1004 �0:206
0:0063 �0:0128

266664
377775

(a) Repeat part (a) of System 6, but for a new set of eigenvalues
f�0:2;�0:5;�1;�1+ jg.

(b) Repeat part (b) of System 6, but compare the following result of
Kautsky et al. [1985]:

K ¼
�159:68 69:844 �165:24 125:23 �45:748

�99:348 7:9892 �14:158 �5:9382 �1:2542

� �
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